AutoODC: Automated Generation of
Orthogonal Defect Classifications

\
'SMU LiGuo Huang® Vincent Ng?> Isaac Persing? Ruili Geng® Xu Bai* Jeff Tian!

Department of Computer Science and Engineering, Southern Methodist University*

r

uTD

Human Language Technology Research Institute, University of Texas at Dallas?
Dallas, TX, USA

INTRODUCTION

@®The systematic classification and analysis of defect data bridge the gap between causal
analysis and statistical quality control, provide valuable in-process feedback to the system
development or maintenance, as well as improve system and software quality.

@The analysis results based on systematic defect classifications enable us to understand the
major impact types of system defects and to pinpoint specific problematic areas for focused
problem resolution and quality improvement.

®0rthogonal Defect Classification (ODC) is the most influential among general frameworks
for software defect classification and analysis.

Issues with Manual ODC Generation

XManual ODC defect classification based on assimilation of existing defect repositories (e.g.,
defect/bug reports) is extremely effort consuming esp. for novices.

@ In the GSM Base Station Systems (GSMBSS) software development group at Motorola GSM
Products Division, 5 experienced development engineers who are familiar with both
project development and ODC were assigned to classify all post-release defects since
1996 by defect “impact” attribute. It took them approximately 6 minutes to classify each
defect. Considering a 1000 defect data set, it would take approximately 2.5 weeks for 5
experienced engineers to complete the classification only for one single ODC attribute.

XThe types of follow-on ODC-based defect analyses are often restricted by the limited
defect classification results. Multi-way defect analyses may not be supported.

Major Contribution of AutoODC

®From a software engineering perspective, we semi-automate ODC defect classification and
evaluate our approach on the ODC “Impact” attribute.

=From an Al perspective, we propose the annotation relevance framework, which aims to
improve automated ODC classification by enabling a machine learning algorithm to exploit
additional experts’ domain knowledge expressed in the form of relevant annotations.

& Traditionally, an ODC expert analyst simply provides the correct classification of a defect record.

& In the annotation relevance framework, the analyst additionally provides for each defect record
relevant annotations, each of which is a text segment (typically a word or phrase) that she
believes can help her determine the ODC classification the record. These annotations
help a learning algorithm focus on the portions of the report relevant for classification

need to be provided only for the training records, not for the test records

Why Relevant Annotations are Needed: Two Motivating Examples

mmary Description

Relevant
wor ds/Phrases
1 Prevent (last) My client somehow managed to delete himself, meaning that no agnaivide,
Admin User from users continued to exist, so no new accounts - admin or otherwise - ceglessary
self-destruction be created, and no-one could log into the site! Fortunatley the siténwvasctionality,
its infancy, so a simple database restore got it up and running againvBuiti be useful
imagine the situtaion if a larger/active site had not been backexhdpall
the admins had been deleted :-(In principle this shouldn't be pessibt
is in fact permitted by the current Elgg core implementation, which
provides no "guard code" to ensure that an admin user cannot sekdelet
self-ban or self-remove admin. The attached code diffs provide that
necessary functionality, andiitould bevery usefulto see these appear in
the forthcoming Elgg 1.7 release, so that the update won't overwrite the
code changes | have made to my client sites.
2 getting 404 after "system settings" this is a fresh install of elyfjafter getting 404,
| hit the "save" button on the "system settings" page | get 404 wighlittk appears broken
message "Oops! Thiknk appears brokeh The link in the address bar
points to ‘http://cricmate.com/action/systemsettings/in$t€n someone
please help me out there? Thanks.

Example 1: Weakened Knowledge. Long defect description lessens the impact of the
important signature, and can potentially cause this report to be misclassified. The phrase
“would be” in the last sentence is a strong indicator of the Requirements category (e.g.,
“would be useful”, “would be great”, “would be cool”), which implies a desired requirement
currently missing from the system. Employing “would be” as a relevance annotation
highlights its importance, allowing the learning algorithm to focus on this piece of evidence
in spite of the long report and correctly classify this example.

Example 2: Confusing Information. Though the presence of the word “install” is evidence
that it may belong to the Installability category, it is actually an example of Reliability.
Exploiting relevance annotations for automated classification could avoid this mistake: the
phrase “link appears broken” was marked as evidence that it is an example of Reliability.

APPROACH: AutoODC Overview

Basic Defect Classification Framework

Step 1

Pre- Step»Z oDC
Defect |:> processing |:> Learning |:> Step3 > Classific
Report defect oDC Classification >
Classification aen
report

Annotation Relevance Framework

Extension 3
Exploiting
domain
knowledge
(synonyms)

Extension 2

Generating
additional
features

Extension 1
Generating

pseudo-
instances

Relevant Annotations

Basic Defect Classification Framework

Step 1: Pre-processing defect reports

wTokenize and stem with the WordNet lexical knowledge base

=»Use unigrams as features and represent each defect record as a binary-valued vector
»Normalize each vector to unit length

Step 2: Learning ODC classification
»Use Support Vector Machine (SVM) for classifier training
®»0ne-versus-others training scheme to train one SVM classifier for predicting each class

Step 3: Classification
»Apply each trained classifier separately to classify an instance.

»Each classifier returns a confidence value. We assign to a defect record the class whose
classifier returns the highest value among the set of values returned by all the classifiers.

Annotation Relevance Framework

Extension 1: Generating pseudo-instances

#» Goal: Augment the training set with additional positive and negative training instances
known as pseudo-instances. To create a pseudo-instance, we
=» remove from the defect report one or more relevant annotations
=» create a feature vector consisting of the remaining unigrams in the report

% Observation: Since a pseudo-instance lacks one or more relevant annotations, the correct
SVM classifier should be less confident about its classification than a non-pseudo instance.
» We implement this observation by creating additional inequality constraints in SVM's

optimization problem.

Extension 2: Generating additional features

#» Goal: Exploit the relevant annotations to create additional features for training.

#» Method: To reduce data sparseness, instead of using a relevant annotation directly as a
feature, we create all possible bigrams (i.e., consecutive words of length two) from each
relevant annotation and use them as additional features.

Extension 3: Exploiting domain knowledge
#» Goal: Exploit human-supplied domain knowledge to create additional training features.
% Method:
Collect all relevant annotations from the training defect records. Have a human analyst partition
them so that each cluster contains all and only synonymous relevant annotations.
®» Assign a unique /D to each cluster.

If a relevant annotation is present in the defect record, we create an additional feature that
corresponds to the ID of the cluster containing the relevant annotation.

EVALUTION

Experiment Setup

AutoODC is experimented on classifying defect records under the ODC “Impact” attribute.
Combinations of basic defect classification system with the 3 extensions were experimented.
Data Set

Industrial defect report: 403 defect records in a social network project domain from an

industrial Company

Training/testing data preparation:

v Two expert analysts independently classified the 403 defect records into 6 categories
under the “Impact” attribute with an initial agreement of 90% and then cross-validated to
resolve the disagreements.

v Distribution over the 6 categories: Capability (284), Security (11), Performance (1),
Reliability (8), Requirements (39), Usability (60)

v Both experts marked the words/phrases relevant for their assigning a defect record to a
particular ODC category and identified the synonyms in these relevant words/phrases.

Evaluation Methodology: 5-fold cross-validation

Evaluation Results (Partial)

RQ: To what extent does the annotation relevance framework help improve ODC defect
classification? Are the 3 extensions all contributing positively to overall performance?

CONCLUSIONS

@ AutoODC produces satisfactory classification results with an accuracy of 80.2% when using
manual defect classification as a basis of evaluation, where accuracy is computed as the
percentage of defect records correctly classified by our classification system.

® As a complement to the manual ODC classification, AutoODC improves the confidence of
defect classification results by reducing the investigation set that a human analyst has to
examine when performing ODC classification.

“

|

: Reliability Capability | Integrity/Security Usability Requirements
Experiment | Accuracy
B R F P | R F B R F P | R F P | R F
Basic 74.2 0.0| 0.0 0.0 77.6 940 850 750 27.3 40.0 489 B6.7 |41.9/70.0 17.9 28.6
Basic+Ext 1 76.9 0.0| 0.0 0.0 80.5 933 86.5 714 455 556 60.9 #6.752.8/57.1 30.8 40.0
Basic+Ext 2 76.4 0.0| 0.0 0.0 79.1 944 86.0 875 63.6 7B.7 %$6.8 #1.7 |48.1/66.7 20.5 31.4
Basict+Ext1,2 78.9 100.0 12.% 22)2 81,1 95.1 87.5 71.4 455 556 [70.7|48.3|57.4 61.9 33.8 43.3
Basic+tExt1,23| 80.2 100.0 12.% 222 82,8 95.1 885 77.8 63.6 70.0 [73.3|55.0/62.9 54.5 30.8 39.3

