
AutoODC: Automated Generation of

Orthogonal Defect Classifications

The systematic classification and analysis of defect data bridge the gap between causal

analysis and statistical quality control, provide valuable in-process feedback to the system

development or maintenance, as well as improve system and software quality.

The analysis results based on systematic defect classifications enable us to understand the

major impact types of system defects and to pinpoint specific problematic areas for focused

problem resolution and quality improvement.

Orthogonal Defect Classification (ODC) is the most influential among general frameworks

for software defect classification and analysis.

Issues with Manual ODC Generation
Manual ODC defect classification based on assimilation of existing defect repositories (e.g.,

defect/bug reports) is extremely effort consuming esp. for novices.

In the GSM Base Station Systems (GSMBSS) software development group at Motorola GSM
Products Division, 5 experienced development engineers who are familiar with both

project development and ODC were assigned to classify all post-release defects since
1996 by defect “impact” attribute. It took them approximately 6 minutes to classify each
defect. Considering a 1000 defect data set, it would take approximately 2.5 weeks for 5

experienced engineers to complete the classification only for one single ODC attribute.

The types of follow-on ODC-based defect analyses are often restricted by the limited

defect classification results. Multi-way defect analyses may not be supported.

Major Contribution of AutoODC
From a software engineering perspective, we semi-automate ODC defect classification and

evaluate our approach on the ODC “Impact” attribute.

From an AI perspective, we propose the annotation relevance framework, which aims to

improve automated ODC classification by enabling a machine learning algorithm to exploit

additional experts’ domain knowledge expressed in the form of relevant annotations.

Traditionally, an ODC expert analyst simply provides the correct classification of a defect record.

In the annotation relevance framework, the analyst additionally provides for each defect record

relevant annotations, each of which is a text segment (typically a word or phrase) that she
believes can help her determine the ODC classification the record. These annotations

help a learning algorithm focus on the portions of the report relevant for classification

need to be provided only for the training records, not for the test records

INTRODUCTION

Step 1: Pre-processing defect reports
Tokenize and stem with the WordNet lexical knowledge base

Use unigrams as features and represent each defect record as a binary-valued vector

Normalize each vector to unit length

Step 2: Learning ODC classification
Use Support Vector Machine (SVM) for classifier training

One-versus-others training scheme to train one SVM classifier for predicting each class

Step 3: Classification
Apply each trained classifier separately to classify an instance.

Each classifier returns a confidence value. We assign to a defect record the class whose

classifier returns the highest value among the set of values returned by all the classifiers.

Department of Computer Science and Engineering, Southern Methodist University1

Human Language Technology Research Institute, University of Texas at Dallas2

Dallas, TX, USA

LiGuo Huang1 Vincent Ng2 Isaac Persing2 Ruili Geng1 Xu Bai1 Jeff Tian1

Basic Defect Classification Framework

Extension 1: Generating pseudo-instances
Goal: Augment the training set with additional positive and negative training instances

known as pseudo-instances. To create a pseudo-instance, we

remove from the defect report one or more relevant annotations

create a feature vector consisting of the remaining unigrams in the report

Observation: Since a pseudo-instance lacks one or more relevant annotations, the correct

SVM classifier should be less confident about its classification than a non-pseudo instance.

We implement this observation by creating additional inequality constraints in SVM's

optimization problem.

Extension 2: Generating additional features
Goal: Exploit the relevant annotations to create additional features for training.

Method: To reduce data sparseness, instead of using a relevant annotation directly as a

feature, we create all possible bigrams (i.e., consecutive words of length two) from each

relevant annotation and use them as additional features.

Extension 3: Exploiting domain knowledge
Goal: Exploit human-supplied domain knowledge to create additional training features.

Annotation Relevance Framework

RESEARCH POSTER PRESENTATION DESIGN © 2011

www.PosterPresentation
s.com

need to be provided only for the training records, not for the test records

Why Relevant Annotations are Needed: Two Motivating Examples

EVALUTION

AutoODC produces satisfactory classification results with an accuracy of 80.2% when using

manual defect classification as a basis of evaluation, where accuracy is computed as the

percentage of defect records correctly classified by our classification system.

As a complement to the manual ODC classification, AutoODC improves the confidence of

defect classification results by reducing the investigation set that a human analyst has to

examine when performing ODC classification.

ID Summary Description Relevant
words/Phrases

1 Prevent (last)
Admin User from
self-destruction

My client somehow managed to delete himself, meaning that no admin
users continued to exist, so no new accounts - admin or otherwise - could
be created, and no-one could log into the site! Fortunatley the site wasin
its infancy, so a simple database restore got it up and running again. But
imagine the situtaion if a larger/active site had not been backed upand all
the admins had been deleted :-(In principle this shouldn't be possible, but
is in fact permitted by the current Elgg core implementation, which
provides no "guard code" to ensure that an admin user cannot self-delete,
self-ban or self-remove admin. The attached code diffs provide that
necessary functionality, and itwould bevery usefulto see these appear in
the forthcoming Elgg 1.7 release, so that the update won't overwrite the
code changes I have made to my client sites.

provide,
necessary
functionality,
would be useful

2 getting 404 after "system settings" this is a fresh install of elgg and after
I hit the "save" button on the "system settings" page I get 404 with the
message "Oops! Thislink appears broken." The link in the address bar
points to "http://cricmate.com/action/systemsettings/install" Can someone
please help me out there? Thanks.

getting 404,
link appears broken

APPROACH: AutoODC Overview

CONCLUSIONS

Example 1: Weakened Knowledge. Long defect description lessens the impact of the

important signature, and can potentially cause this report to be misclassified. The phrase

“would be” in the last sentence is a strong indicator of the Requirements category (e.g.,

“would be useful”, “would be great”, “would be cool”), which implies a desired requirement

currently missing from the system. Employing “would be” as a relevance annotation

highlights its importance, allowing the learning algorithm to focus on this piece of evidence

in spite of the long report and correctly classify this example.

Example 2: Confusing Information. Though the presence of the word “install” is evidence

that it may belong to the Installability category, it is actually an example of Reliability.
Exploiting relevance annotations for automated classification could avoid this mistake: the

phrase “link appears broken” was marked as evidence that it is an example of Reliability.

Experiment Accuracy
Reliability Capability Integrity/Security Usability Requirements

P R F P R F P R F P R F P R F

Basic 74.2 0.0 0.0 0.0 77.6 94.0 85.0 75.0 27.3 40.0 48.9 36.7 41.9 70.0 17.9 28.6

Basic+Ext 1 76.9 0.0 0.0 0.0 80.5 93.3 86.5 71.4 45.5 55.6 60.9 46.7 52.8 57.1 30.8 40.0

Basic+Ext 2 76.4 0.0 0.0 0.0 79.1 94.4 86.0 87.5 63.6 73.7 56.8 41.7 48.1 66.7 20.5 31.4

Basic+Ext1,2 78.9 100.0 12.5 22.2 81.1 95.1 87.5 71.4 45.5 55.6 70.7 48.3 57.4 61.9 33.3 43.3

Basic+Ext1,2,3 80.2 100.0 12.5 22.2 82.8 95.1 88.5 77.8 63.6 70.0 73.3 55.0 62.9 54.5 30.8 39.3

Experiment Setup
AutoODC is experimented on classifying defect records under the ODC “Impact” attribute.
Combinations of basic defect classification system with the 3 extensions were experimented.

Data Set
Industrial defect report: 403 defect records in a social network project domain from an

industrial Company

Training/testing data preparation:

v Two expert analysts independently classified the 403 defect records into 6 categories

under the “Impact” attribute with an initial agreement of 90% and then cross-validated to

resolve the disagreements.

v Distribution over the 6 categories: Capability (284), Security (11), Performance (1),
Reliability (8), Requirements (39), Usability (60)

v Both experts marked the words/phrases relevant for their assigning a defect record to a

particular ODC category and identified the synonyms in these relevant words/phrases.

Evaluation Methodology: 5-fold cross-validation

Evaluation Results (Partial)
RQ: To what extent does the annotation relevance framework help improve ODC defect

classification? Are the 3 extensions all contributing positively to overall performance?

Goal: Exploit human-supplied domain knowledge to create additional training features.

Method:

Collect all relevant annotations from the training defect records. Have a human analyst partition

them so that each cluster contains all and only synonymous relevant annotations.

Assign a unique ID to each cluster.

If a relevant annotation is present in the defect record, we create an additional feature that

corresponds to the ID of the cluster containing the relevant annotation.

