
AutoODC: Automated Generation of

Orthogonal Defect Classifications

LiGuo Huang1 Vincent Ng2 Isaac Persing2 Ruili Geng1 Xu Bai1 Jeff Tian1LiGuo Huang1 Vincent Ng2 Isaac Persing2 Ruili Geng1 Xu Bai1 Jeff Tian1

Dept. of Computer Science and Engineering, Southern Methodist University1

Human Language Technology Research Institute, University of Texas at Dallas2

Dallas, TX, USA

{lghuang}@smu.edu1

{vince}@hlt.utdallas.edu2

11/12/2011 1SMU-CSE@

Introduction

• Systematic classification and analysis of defect data bridge the

gap between causal analysis and statistical quality control

– provide valuable in-process feedback

– improve system and software quality

• Orthogonal Defect Classification (ODC) – the most influential

framework for software defect classification and analysisframework for software defect classification and analysis

• Issues with manual ODC generation

– Manual ODC defect classification based on assimilation of defect

repositories is extremely effort consuming esp. for novices.

– Types of ODC-based defect analyses are often restricted by the limited

defect classification results.

Our solution: AutoODC (Automating the Generation of Orthogonal

Defect Classifications)

11/12/2011 SMU-CSE@ 2

Major Contributions of AutoODC

• Software Engineering: Semi-automate ODC defect

classification and evaluate our approach on the ODC “Impact”

attribute.

– AutoODC improves the confidence of defect classification results by

reducing the investigation set of human analysts

• AI: Propose the annotation relevance framework, which aims

to improve automated ODC classification by enabling a

machine learning algorithm to exploit additional experts’

domain knowledge expressed in the form of relevant

annotations.

11/12/2011 SMU-CSE@ 3

Why Relevant Annotations Needed

ID Summary Description Relevant words/Phrases
1 Prevent (last) Admin

User from self-
destruction

My client somehow managed to delete himself, meaning
that no admin users continued to exist, so no new
accounts - admin or otherwise - could be created, and no-
one could log into the site! Fortunatley the site was in its
infancy, so a simple database restore got it up and running
again. But imagine the situtaion if a larger/active site had
not been backed up and all the admins had been deleted :-
(In principle this shouldn't be possible, but is in fact
permitted by the current Elgg core implementation,
which provides no "guard code" to ensure that an admin
user cannotself-delete,self-ban or self-removeadmin.

provide,
necessary functionality,
would be useful

Weakened

knowledge

11/12/2011 SMU-CSE@ 4

user cannotself-delete,self-ban or self-removeadmin.
The attached code diffs provide that necessary
functionality, and itwould be very usefulto see these
appear in the forthcoming Elgg 1.7 release, so that the
update won't overwrite the code changes I have made to
my client sites.

2 getting 404 after "system settings" this is a freshinstall
of elgg and after I hit the "save" button on the "system
settings" page I get 404 with the message "Oops! This
link appears broken." The link in the address bar points to
"http://cricmate.com/action/systemsettings/install" Can
someone please help me out there? Thanks.

getting 404,
link appears broken

Confusing

Information

AutoODC Approach
• Support Vector Machine (SVM)

• One-versus-others training scheme

11/12/2011 SMU-CSE@ 5

Evaluation
• Experiment Setup: AutoODC is experimented on classifying defect

records under the ODC “Impact” attribute.

• Data Set

– Industrial defect report: 403 defect records in a social network project
domain from an industrial Company

– Training/testing data preparation:

v Two expert analysts independently classified the 403 defect records v Two expert analysts independently classified the 403 defect records
into 6 categories under the “Impact” attribute.

v Distribution over the 6 categories: Capability (284), Security (11),
Performance (1), Reliability (8), Requirements (39), Usability (60)

• Evaluation Methodology: 5-fold cross-validation

• Classification Accuracy: 80.2% when using manual defect
classification as a basis of evaluation

– Accuracy: the percentage of defect records correctly classified by our
classification system.

11/12/2011 SMU-CSE@ 6

Backup ChartsBackup Charts

11/12/2011 SMU-CSE@ 7

Basic Defect Classification Framework
• Step 1: Pre-processing defect reports

– Tokenize and stem with the WordNet lexical knowledge base

– Use unigrams as features and represent each defect record as a
binary-valued vector

– Normalize each vector to unit length

• Step 2: Learning ODC classification
– Use Support Vector Machine (SVM) for classifier training– Use Support Vector Machine (SVM) for classifier training

– One-versus-others training scheme to train one SVM classifier for
predicting each class

• Step 3: Classification
– Apply each trained classifier separately to classify an instance.

– Each classifier returns a confidence value. We assign to a defect
record the class whose classifier returns the highest value among
the set of values returned by all the classifiers.

11/12/2011 SMU-CSE@ 8

Annotation Relevance Framework
• Extension 1: Generating pseudo-instances

– Goal: Augment the training set with additional positive and negative training
instances known as pseudo-instances. To create a pseudo-instance, we

• remove from the defect report one or more relevant annotations

• create a feature vector consisting of the remaining unigrams in the report

– Observation: the correct SVM classifier is less confident about its classification of a
pseudo instance than a non-pseudo instance.

– Implementation: create additional inequality constraints in SVM's optimization
problem

• Extension 2: Generating additional features• Extension 2: Generating additional features
– Goal: Exploit the relevant annotations to create additional features for training.

– Method: To reduce data sparseness, create all possible bigrams (i.e., consecutive
words of length two) from each relevant annotation as additional features.

• Extension 3: Exploiting domain knowledge
– Goal: Exploit human-supplied domain knowledge to create additional training

features.

– Method:
• Collect all relevant annotations from the training defect records. Human analyst partitions

them so that each cluster contains all and only synonymous relevant annotations.

• Assign a unique ID to each cluster.

• If a relevant annotation is present in the defect record, we create an additional feature that
corresponds to the ID of the cluster containing the relevant annotation.

11/12/2011 SMU-CSE@ 9

