
Effective API Recommendation

without Historical Software Repositories

Xiaoyu Liu1, LiGuo Huang1, Vincent Ng2

1 Dept. of Computer Science and Engineering, Southern Methodist University, Dallas, TX

2 Human Language Technology Research Institute, University of Texas and Dallas, TX

Emails: {xiaoyul, lghuang}@smu.edu vince@hlt.utdallas.edu

09/06/2018 @SMU-CSE

Automated API Recommendation, Why?

09/06/2018 @SMU-CSE

Existing API Recommendation Methods
Statistical Learning: irrelevant features (noises) and overlapping features

• Wing-Kwan Chan, Hong Cheng, and David Lo. 2012. Searching connected API subgraph via text phrases. In Proceedings of the 20th ACM SIGSOFT
International Symposium on the Foundations of Software Engineering. ACM, 10.

• Muhammad Asaduzzaman, Chanchal K. Roy, Kevin A. Schneider, and Daqing Hou. 2016. A Simple, Efficient, Context-sensitive Approach for Code
Completion. Journal of Software: Evolution and Process 28, 7 (2016), 512–541.

Code Structure: missing certain semantics of source code
• CollinMcMillan,DenysPoshyvanyk,andMarkGrechanik.2010.Recommending source code examples via API call usages and documentation. In Proceedings

of the 2nd International Workshop on Recommendation Systems for Software Engineering. ACM, 21–25.

• Evan Moritz, Mario Linares-Vásquez, Denys Poshyvanyk, Mark Grechanik, Collin McMillan, and Malcom Gethers. 2013. Export: Detecting and visualizing
API usages in large source code repositories. In Proceedings of the 28th IEEE/ACM International Conference on Automated Software Engineering. IEEE
Press, 646–651.

Mining Historical Software Repositories: maintain tremendous amount of historical
data

• MarcelBruch,MartinMonperrus,andMiraMezini.2009.Learningfromexamples to improve code completion systems. In Proceedings of the 7th ACM
SIGSOFT Symposium on the Foundations of Software Engineering. ACM, 213–222.

• Romain Robbes and Michele Lanza. 2008. How program history can improve code completion. In Proceedings of the 23rd IEEE/ACM International
Conference on Automated Software Engineering. IEEE Computer Society, 317–326.

State-of-the Art
�Gralan: A. T. Nguyen and T. Nguyen. 2015. “Graph-based statistical language model for code”. In Proceedings of

the 37th IEEE International Conference on Software Engineering. IEEE, 858–868.

�APIREC: A. Nguyen, M. Hilton, M. Codoban, H. A. Nguyen, L. Mast, E. Rademacher, T. Nguyen, and D. Dig.
2016. “API code recommendation using statistical learning from fine-grained changes”. In Proceedings of the 24th
ACM SIGSOFT International Symposium on the Foundations of Software Engineering. ACM, 511–522.

09/06/2018 @SMU-CSE

How does Gralan Recommend APIs?

09/06/2018 @SMU-CSE

Proceeding Context:

Generate API Usage

Graph

Extract Child Graph,

Parent Graph and

Subgraphs

Extract Child Graph,

Parent Graph and

Subgraphs

Compute the

probability of

candidate APIs

Compute the

probability of

candidate APIs

3

Predict API with

the highest

probability

Predict API with

the highest

probability

42

?

How does Gralan Recommend APIs?

09/06/2018 @SMU-CSE

3 4
2

Proceeding Context:

Generate API Usage

Graph

Extract Child Graph,

Parent Graph and

Subgraphs

Extract Child Graph,

Parent Graph and

Subgraphs

Compute the

probability of

candidate APIs

Compute the

probability of

candidate APIs

Predict API with

the highest

probability

Predict API with

the highest

probability

How does Gralan Recommend APIs?

09/06/2018 @SMU-CSE

3 4
2

Proceeding Context:

Generate API Usage

Graph

Extract Child Graph,

Parent Graph and

Subgraphs

Extract Child Graph,

Parent Graph and

Subgraphs

Compute the

probability of

candidate APIs

Compute the

probability of

candidate APIs

Predict API with

the highest

probability

Predict API with

the highest

probability

How does Gralan Recommend APIs?

09/06/2018 @SMU-CSE

3 4
2

Proceeding Context:

Generate API Usage

Graph

Extract Child Graph,

Parent Graph and

Subgraphs

Extract Child Graph,

Parent Graph and

Subgraphs

Compute the

probability of

candidate APIs

Compute the

probability of

candidate APIs

Predict API with

the highest

probability

Predict API with

the highest

probability

How does Gralan Recommend APIs?

09/06/2018 @SMU-CSE

3 4
2

Proceeding Context:

Generate API Usage

Graph

Extract Child Graph,

Parent Graph and

Subgraphs

Extract Child Graph,

Parent Graph and

Subgraphs

Compute the

probability of

candidate APIs

Compute the

probability of

candidate APIs

Predict API with

the highest

probability

Predict API with

the highest

probability

How does Gralan Recommend APIs?

09/06/2018 @SMU-CSE

2 4

Proceeding Context:

Generate API Usage

Graph

Extract Child Graph,

Parent Graph and

Subgraphs

Extract Child Graph,

Parent Graph and

Subgraphs

Compute the

probability of

candidate APIs

Compute the

probability of

candidate APIs

Predict API with

the highest

probability

Predict API with

the highest

probability

3

Read from input text file

Write to output text

file
irrelevant

feature

How does Gralan Recommend APIs?

09/06/2018 @SMU-CSE 10

2 3

g C(g) Candidate API Score

FileReader.<init>, BufferedReader.<init>,

BufferedReader.readLine, CONTROL.WHILE

FileReader.<init>, …, BufferedReader.close BufferedReader.close (incorrect) 0.33

FileReader.<init>, ..., CONTROL.WHILE,

BufferedWriter.write

BufferedWriter.write 0.15

… … …

BufferedWriter.<init>, CONTROL.WHILE BufferedWriter.<init>, CONTROL.WHILE,

BufferedWriter.write

BufferedWriter.write 0.25

BufferedWriter.<init>, CONTROL.WHILE,

BufferedReader.close

BufferedReader.close 0.02

… … ..

Proceeding Context:

Generate API Usage

Graph

Extract Child Graph,

Parent Graph and

Subgraphs

Extract Child Graph,

Parent Graph and

Subgraphs

Compute the

probability of

candidate APIs

Compute the

probability of

candidate APIs

Predict API with

the highest

probability

Predict API with

the highest

probability

4

How does APIREC recommend APIs?

09/06/2018 @SMU-CSE 11

APIREC requires a long code change

history of each project, which limits its

applicability to scenarios where long co

change history is unavailable or

inaccessible.

APIREC uses all changes. BUT some of

them could be specific to a historical

project and could therefore incur noise

the change patterns.

Objective and Major Contributions

Objective: To improve the top-1 accuracy of API recommendation.

RecRank: a novel discriminative ranking approach to automatically
recommend top-1 APIs based on the top-10 API candidates suggested
by Gralan.

Usage path features: a novel kind of features based on API usage
paths

09/06/2018 @SMU-CSE 12

Discriminative Re-Ranking for API Recommendation (RecRa

09/06/2018 @SMU-CSE 13

Create Training

Instances

Train RecRank

Re-ranker

Train RecRank

Re-ranker

Re-rank API

Candidates in Test

Set

Re-rank API

Candidates in Test

Set

3

4

Create Training

Instances

1

Extract API

Usage Path

Features

2

Discriminative Re-Ranking for API Recommendation (RecRa

09/06/2018 @SMU-CSE 14

Create Training Instances Extract API Usage Path Features

2

For each API recommendation point in the

training set, training instances are created.

Create one training instance for each of the

10 API candidates recommended by Gralan.

Correct API labeled as “hit”, incorrect API

labeled as “miss”

Each instance is represented using a set of

usage path features.

1

• A sequence of APIs sequentially connected/listed in

API usage order with one entry and one exit API.

• Each usage path contains a candidate API (one of th

10 candidate APIs recommended by Gralan) that

appears either at the end or beginning of the path.

• Represent a data/control flow sequence of APIs

• Compared to context API usage graphs, it is better

captures the linguistic topic of the program

expressing the intention of the developer without

including many irrelevant APIs

Discriminative Re-Ranking for API Recommendation (RecRan

09/06/2018 @SMU-CSE 15

21

Create Training Instances

For each API recommendation point in the

training set, training instances are created.

Create one training instance for each of the

10 API candidates recommended by Gralan.

Correct API labeled as “hit”, incorrect API

labeled as “miss”

Each instance is represented using a set of

usage path features.

Extract API Usage Path Features
forward

usage path

feature

[FileReader.<init> → BufferedReader.<init> →

BufferedReader.readLine → CONTROL.WHILE →

(candidate API)]

Discriminative Re-Ranking for API Recommendation (RecRan

09/06/2018 @SMU-CSE 16

[(candidate API) → CONTROL.WHILE]

21

Create Training Instances

For each API recommendation point in the

training set, training instances are created.

Create one training instance for each of the

10 API candidates recommended by Gralan.

Correct API labeled as “hit”, incorrect API

labeled as “miss”

Each instance is represented using a set of

usage path features.

Extract API Usage Path Features

backward

usage path

feature

Discriminative Re-Ranking for API Recommendation (RecRan

09/06/2018 @SMU-CSE 17

[FileReader.<init> → *→ *→ CONTROL.WHILE →

(candidate API)]

21

Create Training Instances

For each API recommendation point in the

training set, training instances are created.

Create one training instance for each of the

10 API candidates recommended by Gralan.

Correct API labeled as “hit”, incorrect API

labeled as “miss”

Each instance is represented using a set of

usage path features.

Extract API Usage Path Features

fuzzy usage

path feature

Discriminative Re-Ranking for API Recommendation (NB)

09/06/2018 @SMU-CSE 18

Generative Naïve Bayes Classifier

To investigate how generative model performs compared to discriminative model in API

recommendation.

Generative model assumes that the values of the usage path- based features are conditionall

independent of each other given the class.

Candidate APIs are ranked using their associated probabilities, where higher probabilities

correspond to higher ranks.

Discriminative Re-Ranking for API Recommendation

09/06/2018 @SMU-CSE 19

[FileReader.<init> →

BufferedReader.<init> →

BufferedReader.readLine →

CONTROL.WHILE → (candidate API)]
[FileWriter.<init> → BufferedWriter.<init>

→ (candidate API)]

Discriminative Re-Ranking for API Recommendation (SVC)

09/06/2018 @SMU-CSE 20

2. Discriminative SVC

Adjust feature weights based on their relevance to the recommendation point.

� The more often the candidate API co-occurs with the rest of the path in the

training set, the higher the feature value (more relevant features).

Re-rank Top-10 candidate APIs based on their distances from the hyperplane

To investigate how discriminative classification model performs compared to

discriminative ranking model in API recommendation

Discriminative Re-Ranking for API Recommendation (RecRan

09/06/2018 @SMU-CSE 21

3. Discriminative RecRank

•SVC does not compare candidate APIs.

•Train SVM Ranker: Each ranking problem is

composed of the 10 training instances

corresponding to the top-10 candidate APIs for this

recommendation point.

•RecRank learns a hyperplane (by adjusting the

feature weights) to minimize the number of

violations of pairwise ranking in the training set:

� A violation occurs if a training instance

labeled as “hit” is ranked below a training

instance labeled as “miss” by the ranker.

4

Create Training

Instances

Train RecRank

Re-ranker

Train RecRank

Re-ranker

Re-rank API

Candidates in Test

Set

Re-rank API

Candidates in Test

Set

3

Discriminative Re-Ranking for API Recommendation (RecRa

09/06/2018 @SMU-CSE 22

RecRank recommends the

candidate API that has the

highest rank.

4

3

Create Training

Instances

Train RecRank

Re-ranker

Train RecRank

Re-ranker

Re-rank API

Candidates in Test

Set

Re-rank API

Candidates in Test

Set

Empirical Evaluation

09/06/2018 @SMU-CSE 23

How Well Does RecRank Perform?
RQ1. How accurate do RecRank, NB, and SVC recommend APIs in comparison to the
two baselines?

09/06/2018 @SMU-CSE 24

How Well Does RecRank Perform?
RQ1. How accurate do RecRank, NB, and SVC recommend APIs in comparison to the
two baselines?

09/06/2018 @SMU-CSE 25

How Well Does RecRank Perform?

RQ2. How effective are usage path features for API recommendation
compared with context graphs?

09/06/2018 @SMU-CSE 26

E: API Usage Path Features ; C: API Context Graph Features

How Well Does RecRank Perform?
RQ3. How effective are different classes of usage path features for API recommendation?

09/06/2018 @SMU-CSE 27

• Performance drops highly significantly in three cases:

�when the length 2 forward features are removed

�when all forward features are removed

�when all length 2 features are removed

• This by no means implies that features of lengths 3 and 4 are not
useful: these experiments only suggest that the feature group that
is being removed is not useful in the presence of the remaining
features

Conclusions and Future Work

Compared with Gralan, discriminative re-ranking-based API
recommendation system, RecRank, uses usage path-based features to
significantly improved top-1 accuracy by 28.5%–50.0% and MRR by
0.32–0.49.

Compared with APIREC, top-1 accuracy is improved by as much as
23.7%.

Extend RecRank to a wider spectrum of API types and additional
project domains.

09/06/2018 @SMU-CSE 28

