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Automated API Recommendation, Why?
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Existing API Recommendation Methods
Statistical Learning: irrelevant features (noises) and overlapping features

• Wing-Kwan Chan, Hong Cheng, and David Lo. 2012. Searching connected API subgraph via text phrases. In Proceedings of the 20th ACM SIGSOFT 
International Symposium on the Foundations of Software Engineering. ACM, 10. 

• Muhammad Asaduzzaman, Chanchal K. Roy, Kevin A. Schneider, and Daqing Hou. 2016. A Simple, Efficient, Context-sensitive Approach for Code 
Completion. Journal of Software: Evolution and Process 28, 7 (2016), 512–541.

Code Structure: missing certain semantics of source code 
• CollinMcMillan,DenysPoshyvanyk,andMarkGrechanik.2010.Recommending source code examples via API call usages and documentation. In Proceedings 

of the 2nd International Workshop on Recommendation Systems for Software Engineering. ACM, 21–25.

• Evan Moritz, Mario Linares-Vásquez, Denys Poshyvanyk, Mark Grechanik, Collin McMillan, and Malcom Gethers. 2013. Export: Detecting and visualizing
API usages in large source code repositories. In Proceedings of the 28th IEEE/ACM International Conference on Automated Software Engineering. IEEE 
Press, 646–651.

Mining Historical Software Repositories: maintain tremendous amount of historical 
data

• MarcelBruch,MartinMonperrus,andMiraMezini.2009.Learningfromexamples to improve code completion systems. In Proceedings of the 7th ACM 
SIGSOFT Symposium on the Foundations of Software Engineering. ACM, 213–222.

• Romain Robbes and Michele Lanza. 2008. How program history can improve code completion. In Proceedings of the 23rd IEEE/ACM International 
Conference on Automated Software Engineering. IEEE Computer Society, 317–326.

State-of-the Art 
�Gralan: A. T. Nguyen and T. Nguyen. 2015. “Graph-based statistical language model for code”. In Proceedings of

the 37th IEEE International Conference on Software Engineering. IEEE, 858–868.

�APIREC: A. Nguyen, M. Hilton, M. Codoban, H. A. Nguyen, L. Mast, E. Rademacher, T. Nguyen, and D. Dig. 
2016. “API code recommendation using statistical learning from fine-grained changes”. In Proceedings of the 24th 
ACM SIGSOFT International Symposium on the Foundations of Software Engineering. ACM, 511–522.
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2 3

g C(g) Candidate API Score

FileReader.<init>, BufferedReader.<init>, 

BufferedReader.readLine, CONTROL.WHILE 

FileReader.<init>, …, BufferedReader.close BufferedReader.close  (incorrect) 0.33

FileReader.<init>, ..., CONTROL.WHILE, 

BufferedWriter.write 

BufferedWriter.write 0.15

… … …

BufferedWriter.<init>, CONTROL.WHILE BufferedWriter.<init>, CONTROL.WHILE, 

BufferedWriter.write

BufferedWriter.write 0.25

BufferedWriter.<init>, CONTROL.WHILE, 

BufferedReader.close

BufferedReader.close 0.02

… … ..
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How does APIREC recommend APIs?
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APIREC requires a long code change 

history of each project, which limits its

applicability to scenarios where long co

change history is unavailable or 

inaccessible. 

APIREC uses all changes. BUT some of 

them could be specific to a historical 

project and could therefore incur noise

the change patterns.



Objective and Major Contributions

Objective: To improve the top-1 accuracy of API recommendation.

RecRank: a novel discriminative ranking approach to automatically 
recommend top-1 APIs based on the top-10 API candidates suggested 
by Gralan.

Usage path features: a novel kind of features based on API usage 
paths
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Discriminative Re-Ranking for API Recommendation (RecRa
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Create Training Instances Extract API Usage Path Features

2

For each API recommendation point in the 

training set, training instances are created.

Create one training instance for each of the 

10 API candidates recommended by Gralan.

Correct API labeled as “hit”, incorrect API 

labeled as “miss”

Each instance is represented using a set of 

usage path features.

1

• A sequence of APIs sequentially connected/listed in

API usage order with one entry and one exit API.

• Each usage path contains a candidate API (one of th

10 candidate APIs recommended by Gralan) that 

appears either at the end or beginning of the path.

• Represent a data/control flow sequence of APIs 

• Compared to context API usage graphs, it is better 

captures the linguistic topic of the program 

expressing the intention of the developer without 

including many irrelevant APIs



Discriminative Re-Ranking for API Recommendation (RecRan
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21

Create Training Instances

For each API recommendation point in the 

training set, training instances are created.

Create one training instance for each of the 

10 API candidates recommended by Gralan.
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Each instance is represented using a set of 

usage path features.
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forward 

usage path 

feature 

[FileReader.<init> → BufferedReader.<init> →

BufferedReader.readLine → CONTROL.WHILE →

(candidate API)] 
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[(candidate API) → CONTROL.WHILE] 
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[FileReader.<init> → *→ *→ CONTROL.WHILE →

(candidate API)] 
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Create Training Instances

For each API recommendation point in the 

training set, training instances are created.

Create one training instance for each of the 

10 API candidates recommended by Gralan.

Correct API labeled as “hit”, incorrect API 

labeled as “miss”

Each instance is represented using a set of 

usage path features.
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Discriminative Re-Ranking for API Recommendation (NB)
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Generative Naïve Bayes Classifier

To investigate how generative model performs compared to discriminative model in API 

recommendation.

Generative model assumes that the values of the usage path- based features are conditionall

independent of each other given the class.

Candidate APIs are ranked using their associated probabilities, where higher probabilities 

correspond to higher ranks.



Discriminative Re-Ranking for API Recommendation
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[FileReader.<init> →

BufferedReader.<init> →

BufferedReader.readLine →

CONTROL.WHILE → (candidate API)] 
[FileWriter.<init> → BufferedWriter.<init> 

→ (candidate API)] 



Discriminative Re-Ranking for API Recommendation (SVC)
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2. Discriminative SVC

Adjust feature weights based on their relevance to the recommendation point.

� The more often the candidate API co-occurs with the rest of the path in the 

training set, the higher the feature value (more relevant features).

Re-rank Top-10 candidate APIs based on their distances from the hyperplane

To investigate how discriminative classification model performs compared to 

discriminative ranking model in API recommendation
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3. Discriminative RecRank

•SVC does not compare candidate APIs.

•Train SVM Ranker: Each ranking problem is 

composed of the 10 training instances 

corresponding to the top-10 candidate APIs for this

recommendation point.

•RecRank learns a hyperplane (by adjusting the 

feature weights) to minimize the number of 

violations of pairwise ranking in the training set:

� A violation occurs if a training instance 

labeled as “hit” is ranked below a training 

instance labeled as “miss” by the ranker. 
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Empirical Evaluation
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How Well Does RecRank Perform?
RQ1. How accurate do RecRank, NB, and SVC recommend APIs in comparison to the 
two baselines?
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How Well Does RecRank Perform?

RQ2. How effective are usage path features for API recommendation 
compared with context graphs?
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E: API Usage Path Features ;                      C: API Context Graph Features 



How Well Does RecRank Perform?
RQ3. How effective are different classes of usage path features for API recommendation?
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• Performance drops highly significantly in three cases: 

�when the length 2 forward features are removed

�when all forward features are removed

�when all length 2 features are removed

• This by no means implies that features of lengths 3 and 4 are not 
useful: these experiments only suggest that the feature group that
is being removed is not useful in the presence of the remaining 
features



Conclusions and Future Work

Compared with Gralan, discriminative re-ranking-based API 
recommendation system, RecRank, uses usage path-based features to 
significantly improved top-1 accuracy by 28.5%–50.0% and MRR by
0.32–0.49.

Compared with APIREC, top-1 accuracy is improved by as much as 
23.7%.

Extend RecRank to a wider spectrum of API types and additional 
project domains.
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