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Plan for the Talk

S Noun phrase coreference resolution
— general machine learning approach
— baseline coreference resolution system

S ldentification of anaphoric/non-anaphoric noun phrases
(Anaphoricity determination)

— why anaphoricity info can help coreference resolution
— general machine learning approach
— anaphoricity determination system

§ Using anaphoricity information in coreference resolution



Noun Phrase Coreference

ldentify all noun phrases that refer to the same entity

Queen Elizabeth set about transforming her husband,
King George VI, into a viable monarch. Logue,
a renowned speech therapist, was summoned to help

the King overcome his speech impediment...
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A Machine Learning Approach

§ Classification

— given a description of two noun phrases, NP;and NP;,
classify the pair as coreferent or not coreferent

coref ? coref ?
| | | |

[Queeln Elizabeth] set about transforming [her] [huslband],

not coref ?

Aone & Bennett [1995]; Connolly et al. [1994];
McCarthy & Lehnert [1995]; Soon, Ng & Lim [2001]



A Machine Learning Approach

S Clustering
— coordinates pairwise coreference decisions

Queen Elizabeth

Queen Elizabeth
her

coref

— > [Queen Elizabeth], «———
King George VI

not set about transforming NG nusband

coref L&l 2 Alga King George VI

[ husband] theKing
not coref his

Logue

L ogue

arenowned
speech therapist




Machine Learning Issues

§ Training data creation
§ Instance representation
S Learning algorithm

§ Clustering algorithm

[ Ng and Cardie, ACL'02 ]



Baseline System: Training Data Creation

S Creating training instances

— texts annotated with coreference information

— one instance for each pair of noun phrases
» feature vector: describes the two NPs and context
» class value:
coref pairs on the same coreference chain
not coref otherwise

— use sampling to deal with skewed class distributions



Baseline System: Instance Representation

§ 53 features per instance

Lexical (9) NP string matching operations
Semantic (6) Semantic compatibility tests, aliasing
Positional (2) Distance in terms of number of sentences/paragraphs
Knowledge-based (2) | Naive pronoun resolution, rule-based coref resolution
NP type
Grammatical role
Grammatical (34) Linguistic constraints

Linguistic preferences
Heuristics




Baseline System: Learning Algorithm

§ C4.5 (Quinlan, 1993): decision tree induction

S Classifier outputs coreference likelihood



Baseline System: Clustering Algorithm

- Best-first single-link clustering algorithm

- selects as antecedent the NP with the highest
coreference likelihood from among preceding
coreferent NPs for each noun phrase



Baseline System: Evaluation

S MUC-6 and MUC-7 coreference data sets
S documents annotated w.r.t. coreference
S MUC-6: 30 training texts + 30 test texts
S MUC-7: 30 training texts + 20 test texts

§ MUC scoring program
— recall, precision, F-measure



Baseline System: Results

MUC-6 MUC-7
R P F | R P F
Baseline 703 583 63.8 | 655 582 61.6
Best MUC System 59 72 65 | 56.1 688 61.8
Worst MUC System 36 44 40 | 525 214 304
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Motivation

S Baseline coreference system

— single-link clustering algorithm attempts to find an
antecedent for each noun phrase

S What we really want

— single-link clustering algorithm attempts to find an
antecedent for each anaphoric noun phrase

S Availability of anaphoricity info can increase the precision
of the coreference system
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Anaphoricity Determination

For each noun phrase in a text, determine whether it is part
of a coreference chain but is not the head of the chain.

Quesrr=iZzabeth set about transforming her hussand,
King George VI, into a viaore-raonarch. Logte,
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A Machine Learning Approach

§ Classification

— given a description of a noun phrases, NP;, classify
NP, as anaphoric or not anaphoric

non- non-
anaphoric anaphoric anaphoric

[Queen Elizabeth] set about transforming [her] [husband], ...



Anaphoricity Determination System

§ Training data creation
— texts annotated with coreference information
— one instance for each noun phrase

S Learning algorithm
— C4.5



Anaphoricity Determination System

S Instance representation
— 37 features per instance

Lexical (4) case, string matching, head matching

Positional (3) header, first sentence, first paragraph

Semantic (4) title, aliasing, semantic compatibility
NP type: definite, indefinite, bare plural

Grammatical (35) NP property: pre-modified, post-modified, number
Syntactic pattern: THE_N, THE_PN, THE_ADJ N




Anaphoricity Determination System: Evaluation

§ MUC-6 and MUC-7 coreference data sets

Corpus Instances | % Negatives| Accuracy
MUC-6 test 4565 66.3 86.1

MUC-7 test 3558 73.2 84.0




Existing Approaches to Anaphoricity Determination

S Heuristic-based approaches

— Paice and Husk (1987), Lappin and Leass (1994),
Kennedy and Boguraev (1996), Denber (1998),
Vieira and Poesio (2000)

S Machine learning approaches
— Unsupervised: Bean and Riloff (1999)
— Supervised: Evans (2001)
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S Approaches to anaphoricity determination

Our Approach Previous Approaches

§ focuses on common nouns

S handle specific types of

S can operate on all types noun phrases only
of noun phrases




Comparison with Previous Work (1)

S Existing anaphoricity determination algorithms address
only specific types of NPs:

— pleonastic pronouns

» Paice and Husk (1987), Lappin and Leass (1994), Kennedy
and Boguraev (1996), Denber (1998)

— definite descriptions
» Bean and Riloff (1999), Vieira and Peosio (2000)

— anaphoric and non-anaphoric uses of it
» Evans (2001)
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Our Coref System Previous Coref Systems
S employs anaphoricity S perform anaphoricity
determination as a determination within the

separate component coreference system




Comparison with Previous Work (1)

S Most previous work performs anaphoricity determination
implicitly
— e.g. via a specific feature in the coreference system

— One exception:
» Harabagiu et al. (2001)
» assumes perfect anaphoricity information

» effectively employs a separate (manual) anaphoricity
determination component
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Comparison with Previous Work (lll)

S Evaluation of anaphoricity determination system

Our System Previous Systems
§ evaluated as a § evaluated as a
standalone component standalone component
§ evaluated in the context § contribution to
of coreference resolution coreference resolution
not evaluated




Comparison with Previous Work (lll)

§ Little previous work evaluates the effects of anaphoricity
determination in anaphora/coreference resolution

Anaphoricity Determination System Effects on Coref Resolution

Bean and Riloff (1999) ?
Denber (1998) ?
Evans (2001) | mitkov et al. (2001)
Kennedy and Boguraev (1996) ?
Lappin and Leass (1994) ?
Paice and Husk (1987) ?
Vieira and Poesio (2000) !
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§ Using anaphoricity information in coreference resolution



How can anaphoricity information be used?

S The clustering algorithm will only search for an
antecedent for anaphoric noun phrases.

§ Hypothesis
— Anaphoricity information will improve precision



Anaphoricity Determination for Coref Resolution

MUC-6 MUC-7
R P FJ| R P F
Baseline 703 583 638 | 655 582 61.6

S coreference system has fairly low precision



Results (Perfect Anaphoricity Information)

MUC-6 MUC-7
R P F R P F
Baseline 703 583 638 | 655 582 61.6
With perfect anaphoricity info 66.3 814 731 | 615 832 707

§ perfect anaphoricity information can improve precision



Results (Learned Anaphoricity Information)

MUC-6 MUC-7
R P F R P F
Baseline 703 583 638 | 655 582 616
With learned anaphoricity info 574 716 63.7 | 470 771 584

S Improvement in precision comes at the expense of

significant loss in recall




What went wrong?

§ Hypothesis 1

— drop in recall and overall performance is caused by poor
accuracy of anaphoricity classifier on positive instances



What went wrong?

§ Hypothesis 1

— drop in recall and overall performance is caused by poor
accuracy of anaphoricity classifier on positive instances

§ Accuracy of anaphoricity classifier
— overall: 86.1% (MUC-6) and 84.0% (MUC-7)
— positives only: 73.1% (MUC-6) and 66.2% (MUC-7)

S Anaphoricity classifier misclassifies 414 and 322
anaphoric entities as non-anaphoric for the MUC-6 and
MUC-7 data sets, respectively



Need more accuracy?

§ Hypothesis 1.1

— accuracy levels of 66-73% on positive instances for
anaphoricity determination are not adequate for improving
coreference resolution
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Need more accuracy?

§ Hypothesis 1.1

— accuracy levels of 66-73% on positive instances for
anaphoricity determination are not adequate for improving
coreference resolution

s Goal
— Improve the accuracy on positive instances

S How?



Improving Accuracy on Positive Instances

§ Observations

— string matching and aliasing are strong indicators of
coreference
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Improving Accuracy on Positive Instances

§ Observations

— string matching and aliasing are strong indicators of
coreference

— string matching and aliasing are weaker indicators of
anaphoricity

§ Goal

— ensure that anaphoric NPs involved in these two
types of relations are correctly classified



Classification with Constraints

S Assume that an NP is anaphoric (and bypass the
anaphoricity classifier) if anaphoricity is indicated by
either the string matching or the aliasing constraint

§ Accuracy on positive instances
— no constraints: 73.1% (MUC-6) and 66.2% (MUC-7)
— with constraints: 82.0% (MUC-6) and 80.8% (MUC-7)



Results (Classification with Constraints)

MUC-6 MUC-7
R P F | R P F
Baseline 703 583 63.8 | 655 582 61.6
With anaphoricity (no constraints) 574 716 63.7 | 470 771 584
With anaphoricity (with constraints) | 634 683 658 | 59.7 69.3 64.2

S large gains in precision and smaller drops in recall

S automatically acquired anaphoricity info can be used to

Improve the performance of coreference resolution




Results (Comparison with Best MUC Systems)

MUC-6 MUC-7
R P F R P F
With anaphoricity (with constraints) | 634 683 658 | 59.7 69.3 64.2
Best MUC System 59 72 65 | 56.1 68.8 61.8




Results (Comparison with Perfect Anaphoricity)

MUC-6 MUC-7

R P F|R P F

With anaphoricity (with constraints) | 634 683 658 | 59.7 69.3 64.2

With perfect anaphoricity info 66.3 814 73.1 | 615 832 707

§ substantial room for improvement in anaphoricity
determination




Summary

S Presented a supervised learning approach for
anaphoricity determination that can handle all types of
NPSs

S Investigated the use of anaphoricity information in
coreference resolution

S Showed automatically acquired knowledge of anaphoricity
can be used to improve the performance of a learning-
based coreference system



