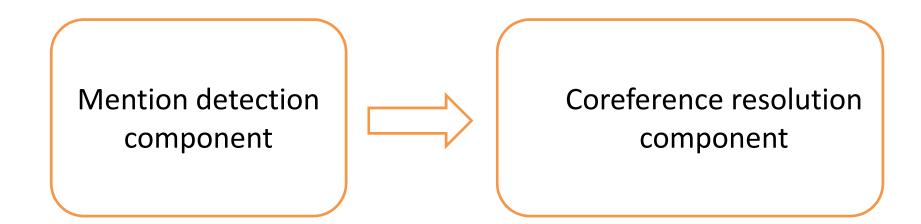
# Combining the Best of Two Worlds: A Hybrid Approach to Multilingual Coreference Resolution

#### Chen Chen and Vincent Ng

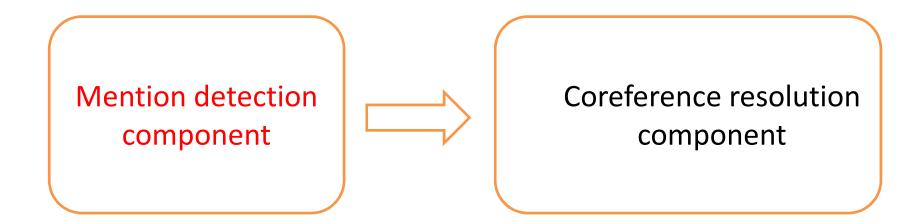
Human Language Technology Research Institute
The University of Texas at Dallas

## Our Participation


- Participated in 4 tracks
  - English (closed)
  - Chinese (closed)
  - Chinese (open)
  - Arabic (closed)

## **Major Results**

- Official score on test set: 56.35
  - Ranked 3rd overall
- Ranked 1st in Chinese open and closed tracks


## System Architecture

A pipeline architecture



## System Architecture

A pipeline architecture



## Mention Detection Component

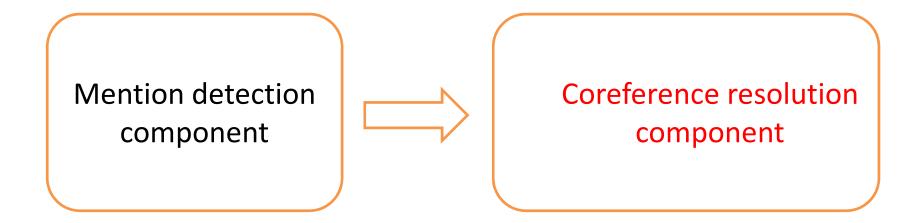
- A hybrid approach
  - Combines rules and machine learning
- A three-step approach
  - 1. Extraction (improves recall)
    - Use parse trees and named entities to extract as many mentions as possible
  - 2. Heuristic-based Pruning (improves precision)
    - Heuristically prune erroneous mentions
  - 3. Learning-based Pruning (further improves precision)
    - Use training data to guide pruning

## Mention Detection Component

- A hybrid approach
  - Combines rules and machine learning
- A three-step approach
  - 1. Extraction (improves recall)
    - Use parse trees and named entities to extract as many mentions as possible
  - 2. Heuristic-based Pruning (improves precision)
    - Heuristically prune erroneous mentions
  - 3. Learning-based Pruning (further improves precision)
    - Use labeled data to guide pruning

## Learning-Based Pruning

#### Observation


- If an NP is never annotated as a mention in the training data, it is probably not a mention
  - e.g., "no problem", "the same"

#### Learning-based pruning

- Prune an extracted mention if the likelihood that its head is a mention (according to the training data) is less than the **Pruning Threshold**
  - a threshold to be tuned based on development data

## System Architecture

A pipeline architecture



## Coreference Resolution Component

- Hybrid approach
  - Combines rule-based and learning-based methods
    - 1. Build a rule-based resolver
    - 2. Parameterize the resolver
    - 3. Learn the parameters
      - by leveraging training data

## Coreference Resolution Component

- Hybrid approach
  - Combines rule-based and learning-based methods
    - 1. Build a rule-based resolver
    - 2. Parameterize the resolver
    - 3. Learn the parameters
      - by leveraging training data

## Step 1: Build a Rule-Based Resolver

- use Stanford's multi-pass sieve approach
  - contains Stanford's sieves and our new sieves

#### Sieves for Chinese

- Chinese Head Match
- Discourse Processing
- Exact String Match
- Precise Constructs
- Strict Head Match A-C
- Proper Head Match
- Pronouns
- Lexical Pair Sieve

#### Chinese Head Match Sieve

- Applicable to only the newswire documents
  - owing to the way these documents are annotated
- Posits two mentions as coreferent if they have the same head and one is embedded within the other
- Exception: coordinated NP
  - 查尔斯和戴安娜[Charles and Diana] and 戴安娜 [Diana]

#### **Precise Constructs Sieve**

- a Stanford sieve that posts two NPs as coreferent if one is an acronym or abbreviation of the other, or if they are appositives.
- We augment this sieve with additional rules to handle abbreviations in Chinese
  - Abbreviation of foreign person names:
     萨达姆·侯赛因[Saddam Hussein] and 萨达姆[Saddam]
  - Abbreviation of Chinese person names:
     陈总统[Chen President] and 陈水扁总统[Chen Shui-bian President].
  - Abbreviation of country names多国[Do country] and 多米尼加[Dominica]

#### **Pronouns Sieve**

- a Stanford sieve for resolving pronouns based on gender, number, and animacy agreement
- But ... these three grammatical attribute values were not provided by the organizers for Chinese
  - We learned these values from the training data

#### How to learn these attribute values?

#### • 3 steps

- Employ simple heuristics to extract attribute values for easy-to-handle mentions
  - E.g., 她[she] (Female, Single and Animate)
- If a mention in a coreference chain has these attribute values extracted, we propagate such information to all mentions in the same chain
- Based on these automatically extracted attribute values, we create six word lists: (1) animate words, (2) inanimate words, (3) female words, (4) male words, (5) singular words, and (6) plural words.

#### Lexical Pair Sieve

#### Motivation

- String/head match used in the Stanford sieves are not accurate indicators of coreference/non-coreference
- Two mentions with same head may not be coreferent
  - E.g., "别人[other people]" and "别人[other people]".
- Two mentions with different heads may be coreferent
  - E.g., "大陆[mainland]" and "中国[China]".

#### Lexical Pair Sieve

- posits two mentions as coreferent if the probability they are coreferent (according to training data) >= S-high
- disallows two mentions to be coreferent if the probability they are coreferent <= S-low</li>
- S-high, S-low tuned based on development data

# Sieves for English

• Stanford sieves + Lexical Pair sieve

### Sieves for Arabic

Exact String Match sieve + Lexical Pair sieve

Adding more sieves deteriorates performance

## Coreference Resolution Component

- Hybrid approach
  - Combines rule-based and learning-based methods
    - 1. Build a rule-based resolver
    - 2. Parameterize the resolver
    - 3. Learn the parameters

## Step 2: Parameterize the Resolver

- Two sets of tunable parameters
  - Lexical probability thresholds
    - E.g., S-low, S-high, Pruning Threshold
  - Rule relaxation parameters
    - each condition of a coreference rule in each sieve is associated with a parameter to control whether the condition should be removed or not
      - Can potentially simplify a rule

## Coreference Resolution Component

- Hybrid approach
  - Combines rule-based and learning-based methods
    - 1. Build a rule-based resolver
    - 2. Parameterize the resolver
    - 3. Learn the parameters

## Step 3: Learn the Parameters

• The two types of parameters are learned jointly to optimize the desired evaluation measure (average of MUC, CEAF, and B<sup>3</sup>) on development data

| Track  | System                                                      | MD   | MUC  | BCUBED | CEAF | AVG  |
|--------|-------------------------------------------------------------|------|------|--------|------|------|
| Closed | Full                                                        | 72.4 | 64.1 | 74.1   | 50.5 | 62.9 |
| Closed | -Rule relaxation parameters                                 | 71.9 | 64.2 | 74.0   | 49.9 | 62.6 |
| Closed | -Lexical probability thresholds                             | 71.9 | 63.5 | 73.8   | 50.0 | 62.4 |
| Closed | -Rule relaxation parameters -Lexical probability thresholds | 71.5 | 63.3 | 73.6   | 49.5 | 62.1 |

| Track  | System                                                      | MD   | MUC  | BCUBED | CEAF | AVG  |
|--------|-------------------------------------------------------------|------|------|--------|------|------|
| Closed | Full                                                        | 72.4 | 64.1 | 74.1   | 50.5 | 62.9 |
| Closed | -Rule relaxation parameters                                 | 71.9 | 64.2 | 74.0   | 49.9 | 62.6 |
| Closed | -Lexical probability thresholds                             | 71.9 | 63.5 | 73.8   | 50.0 | 62.4 |
| Closed | -Rule relaxation parameters -Lexical probability thresholds | 71.5 | 63.3 | 73.6   | 49.5 | 62.1 |

| Track  | System                                                      | MD   | MUC  | BCUBED | CEAF | AVG  |
|--------|-------------------------------------------------------------|------|------|--------|------|------|
| Closed | Full                                                        | 72.4 | 64.1 | 74.1   | 50.5 | 62.9 |
| Closed | -Rule relaxation parameters                                 | 71.9 | 64.2 | 74.0   | 49.9 | 62.6 |
| Closed | -Lexical probability thresholds                             | 71.9 | 63.5 | 73.8   | 50.0 | 62.4 |
| Closed | -Rule relaxation parameters -Lexical probability thresholds | 71.5 | 63.3 | 73.6   | 49.5 | 62.1 |

| Track  | System                                                      | MD   | MUC  | BCUBED | CEAF | AVG  |
|--------|-------------------------------------------------------------|------|------|--------|------|------|
| Closed | Full                                                        | 72.4 | 64.1 | 74.1   | 50.5 | 62.9 |
| Closed | -Rule relaxation parameters                                 | 71.9 | 64.2 | 74.0   | 49.9 | 62.6 |
| Closed | -Lexical probability thresholds                             | 71.9 | 63.5 | 73.8   | 50.0 | 62.4 |
| Closed | -Rule relaxation parameters -Lexical probability thresholds | 71.5 | 63.3 | 73.6   | 49.5 | 62.1 |

| Track  | System                                                      | MD   | MUC  | BCUBED | CEAF | AVG  |
|--------|-------------------------------------------------------------|------|------|--------|------|------|
| Closed | Full                                                        | 72.4 | 64.1 | 74.1   | 50.5 | 62.9 |
| Closed | -Rule relaxation parameters                                 | 71.9 | 64.2 | 74.0   | 49.9 | 62.6 |
| Closed | -Lexical probability thresholds                             | 71.9 | 63.5 | 73.8   | 50.0 | 62.4 |
| Closed | -Rule relaxation parameters -Lexical probability thresholds | 71.5 | 63.3 | 73.6   | 49.5 | 62.1 |

| Track  | System                                                      | MD   | MUC  | BCUBED | CEAF | AVG  |
|--------|-------------------------------------------------------------|------|------|--------|------|------|
| Closed | Full                                                        | 72.4 | 64.1 | 74.1   | 50.5 | 62.9 |
| Closed | -Rule relaxation parameters                                 | 71.9 | 64.2 | 74.0   | 49.9 | 62.6 |
| Closed | -Lexical probability thresholds                             | 71.9 | 63.5 | 73.8   | 50.0 | 62.4 |
| Closed | -Rule relaxation parameters -Lexical probability thresholds | 71.5 | 63.3 | 73.6   | 49.5 | 62.1 |

 Performance drops when either set of parameters is removed from the system

| Track  | System                                                      | MD   | MUC  | BCUBED | CEAF | AVG  |
|--------|-------------------------------------------------------------|------|------|--------|------|------|
| Closed | Full                                                        | 72.4 | 64.1 | 74.1   | 50.5 | 62.9 |
| Closed | -Rule relaxation parameters                                 | 71.9 | 64.2 | 74.0   | 49.9 | 62.6 |
| Closed | -Lexical probability thresholds                             | 71.9 | 63.5 | 73.8   | 50.0 | 62.4 |
| Closed | -Rule relaxation parameters -Lexical probability thresholds | 71.5 | 63.3 | 73.6   | 49.5 | 62.1 |
| Open   | Full                                                        | 72.9 | 65.3 | 74.8   | 50.7 | 63.6 |
| Open   | -Rule relaxation parameters                                 | 72.8 | 65.1 | 74.5   | 50.4 | 63.3 |
| Open   | -Lexical probability thresholds                             | 72.7 | 65.0 | 74.5   | 50.4 | 63.3 |
| Open   | -Rule relaxation parameters -Lexical probability thresholds | 72.4 | 64.6 | 74.3   | 50.1 | 63.0 |

| Track  | System                                                      | MD   | MUC  | BCUBED | CEAF | AVG  |
|--------|-------------------------------------------------------------|------|------|--------|------|------|
| Closed | Full                                                        | 72.4 | 64.1 | 74.1   | 50.5 | 62.9 |
| Closed | -Rule relaxation parameters                                 | 71.9 | 64.2 | 74.0   | 49.9 | 62.6 |
| Closed | -Lexical probability thresholds                             | 71.9 | 63.5 | 73.8   | 50.0 | 62.4 |
| Closed | -Rule relaxation parameters -Lexical probability thresholds | 71.5 | 63.3 | 73.6   | 49.5 | 62.1 |
| Open   | Full                                                        | 72.9 | 65.3 | 74.8   | 50.7 | 63.6 |
| Open   | -Rule relaxation parameters                                 | 72.8 | 65.1 | 74.5   | 50.4 | 63.3 |
| Open   | -Lexical probability thresholds                             | 72.7 | 65.0 | 74.5   | 50.4 | 63.3 |
| Open   | -Rule relaxation parameters -Lexical probability thresholds | 72.4 | 64.6 | 74.3   | 50.1 | 63.0 |

- Open track: resolver employs named entity information
  - Consistent improvement in performance
  - Both sets of parameters are crucial to performance

| Track  | System                                                      | MD   | MUC  | BCUBED | CEAF | AVG  |
|--------|-------------------------------------------------------------|------|------|--------|------|------|
| Closed | Full                                                        | 72.4 | 64.1 | 74.1   | 50.5 | 62.9 |
| Closed | -Rule relaxation parameters                                 | 71.9 | 64.2 | 74.0   | 49.9 | 62.6 |
| Closed | -Lexical probability thresholds                             | 71.9 | 63.5 | 73.8   | 50.0 | 62.4 |
| Closed | -Rule relaxation parameters -Lexical probability thresholds | 71.5 | 63.3 | 73.6   | 49.5 | 62.1 |
| Open   | Full                                                        | 72.9 | 65.3 | 74.8   | 50.7 | 63.6 |
| Open   | -Rule relaxation parameters                                 | 72.8 | 65.1 | 74.5   | 50.4 | 63.3 |
| Open   | -Lexical probability thresholds                             | 72.7 | 65.0 | 74.5   | 50.4 | 63.3 |
| Open   | -Rule relaxation parameters -Lexical probability thresholds | 72.4 | 64.6 | 74.3   | 50.1 | 63.0 |

Similar trends observed for English and Arabic

## Official Test Set F-Scores

| Track   | Track  | MD   | MUC  | BCUBED | CEAF | AVG  |
|---------|--------|------|------|--------|------|------|
| English | Closed | 73.8 | 63.7 | 69.0   | 46.4 | 59.7 |
| Chinese | Closed | 71.6 | 62.2 | 73.6   | 51.0 | 62.2 |
| Chinese | Open   | 72.4 | 64.7 | 74.6   | 51.3 | 63.5 |
| Arabic  | Closed | 59.8 | 39.0 | 61.5   | 40.8 | 47.1 |

#### Official Test Set F-Scores

| Track   | Track  | MD   | MUC  | BCUBED | CEAF | AVG  |
|---------|--------|------|------|--------|------|------|
| English | Closed | 73.8 | 63.7 | 69.0   | 46.4 | 59.7 |
| Chinese | Closed | 71.6 | 62.2 | 73.6   | 51.0 | 62.2 |
| Chinese | Open   | 72.4 | 64.7 | 74.6   | 51.3 | 63.5 |
| Arabic  | Closed | 59.8 | 39.0 | 61.5   | 40.8 | 47.1 |

- Best result in Chinese closed and open tracks
  - NE information useful for Chinese coreference
- Results for Arabic are fairly poor
  - Due to lack of linguistic expertise

#### Conclusion

- Proposed a hybrid rule-based and learningbased approach to coreference resolution
- Showed that the learning-based multi-pass sieve approach can work well for Chinese
- Feature engineering plays an important role in performance
  - But this requires language specific knowledge