Recovering Traceability Links in Requirements Documents

Hpnasss

Zeheng Lil, Mingrui Chen?, LiGuo Huang?, and Vincent Ng?

1Southern Methodist University

Task

= Given a set of high-level requirements and a set of low-level requirements, recover

the traceability links between them
= Two requirements should be linked if one is a refinement of the other

Example
High-Level Requirements Low-Level Requirements
HROI ucor
The underlined character in each menu Use case name: |store a contact’s information
selection shall be a shortcut key. When i the address book should store a contact’s name,
control and the shortcut key are pressed, the Summary: eimsil, addrcssand phorewumber
menu selection should be loaded. 1. enter "pine" command in terminal
_— 2. cither enter "a" or use arrows to make "address
HR0O2 book" line highlighted and enter "enter"
The system shall have an address book Description: 3. enter "@"
available to store contacts. 4. enter nickname, fullname, fcc, comment and
addresses. may leave some fields blank

HRO3 5. press cfrl+x to save the entry
The system shall have a help system that
offers tips and explanation for each screen uco2
and each item on the screens upon demand. Use case name: [access help system

Summary: user accesses help system

Description: user presses help key

= Requirements traceability is many-to-many mapping:
* A high-level requirement can be refined by multiple low-level requirements
* A low-level requirement can refine multiple high-level requirements
= HROI is refined by UCO1
» UCO1 specifies the shortcut key for saving an entry in the address book
= HRO2 is refined by UCO1
» UCO1 specifies how to store contacts in the address book
= HRO3 is refined by UC02
* Both of them are concerned with the help system

Why is it important for Software Engineering?
= Software system development is guided by the evolution and refinement of
requirements
= Requirements specifications are refined with additional design details and
implementation information as the development life cycle progresses

Why is it challenging for NLP?
= Abundant information irrelevant to the link establishment

= Information irrelevant to the establishment of one link could be relevant to the
establishment of another link involving the same requirement

Datasets
= Pine - Email system of University of Washington
= WorldVistA — Health information system

Datasets Pine | WorldVistA
= # of high-level requirements 49 129

= # of low-level requirements 51 317

= Avg. # of words per high-level requirement 17 18

= Avg. # of words per low-level requirement 148 |26

= Avg. # of links per high-level requirement 5.1 |13.6

= Avg. # of links per low-level requirement 49 |12

= # of pairs that have links 250 394

= # of pairs that do not have links 2249 18799

Baseline Systems

1. Unsupervised baselines
» Link two documents if their Cosine similarity exceeds a certain threshold
» Employ two ways to represent a document
= as a vector of unigrams
» Feature values are the //-/df values
= as a vector of n topics induced by an LDA model
* Feature values are the probabilities the document belongs to the topics
* n=10,20, ..., 50 (Pine) and 50, 60,... , 100 (WorldVistA)
* nis tuned on test data (thus giving an unfair advantage to these
baselines)
II. Supervised baseline
» Linking decisions made by a binary classifier trained using LibSVM
= Create instances by pairing each high-level requirement with each low-level
requirement
= Positive if the two requirements should be linked, and negative otherwise
= Two types of binary-valued features:
* Word pairs: a pair of words (w;, w;) from the high- and low-level
documents respectively, indicating their presence in these documents
* LDA-induced topic pairs: topic pair (t; t;) whose value is 1 if t; and t; are
the most probable topics for the high- and low-level requirements
= C (the regularization parameter) is tuned on development data

2The University of Texas at Dallas

Knowledge-rich Approach

Goal: Improve supervised baseline using two types of human-supplied knowledge
I. Noun and verb clusters
=*Two ways to create noun and verb clusters
= Manually
« First define domain-relevant noun and verb categories, then populate them
 Pine: 8 noun clusters and 10 verb clusters
* WordVistA: 31 noun clusters and 14 verb clusters
* A time-consuming process
= Automatically (using single-link agglomerative clustering)
» Each noun (verb) is represented using the verbs (nouns) it co-occurs with
o We only cluster nouns/verbs in the training data that (1) have at least
three characters, and (2) appear in only high-level or only low-level
documents
» Each noun/verb is initially in its own cluster
* In each iteration, it merges the two most similar clusters and stops when the
desired number of clusters is reached
* Number of clusters: 10, 15, 20 (Pine) and 10, 20, 30, 40, 50 (WorldVistA)
=Use the sdnibd/indedgdiakiyterit o redteefivemaldititmaFtypescadifeltuebspment data
= Verb pairs: pairs of verbs collected from high- and low-level requirements
= Verb group pairs: replace verbs in the verb pairs with their cluster ids
= Noun pairs: pairs of nouns collected from high- and low-level requirements
= Noun group pairs: replace nouns in the noun pair with their cluster ids
= Dependency pairs: created by pairing each noun-verb pair found in high-level
requirement with each noun-verb pair found in low-level requirement
=Cluster-based features can provide better generalization than word-based features

II. Annotator rationales
=Rationales are words/phrases in a training document that are considered relevant to the
classification task at hand by the human annotator
=For each link in the training set, we asked the annotator to identify words/phrases from
the associated requirements that are relevant to establishing the link
=Rationales are used to create two types of additional training instances
= One pseudo positive instance is created from each positive training instance
* Created by first removing the rationales from the two requirements
= Three pseudo negative instances are created from each negative training instance
 The first is created by removing only rationales from high-level document
* The second is created by removing only rationales from low-level document
* The third is created by removing rationales from both requirements
=Potentially allow the learner to focus on learning from the relevant phrases
=Example
Al: The system shall have an address book available to store contacts.
» Terms in red are rationales that are helpful for recovering the link
» Retain terms in red results in pseudo positive instance
» Retain terms in blue results in pseudo negative instance

Evaluation
= Evaluation metrics
* Recall: percentage of recovered links in the gold standard
» Precision: percentage of correctly recovered links
* F-score: unweighted harmonic mean of recall and precision
= Results

Pine WorldVistA
System No Pseudo Pseudo pos+neg | No Pseudo Pseudo pos+neg
R P F |R P F |R P F |R P F
TEidf Baseline |73.6 433 545 |- - ~ |604 378 465]|- -
LDA Baseline 304 392 342 |- - ~ |259 106 151]- -

Supervised baseline | 504 67.0 57.5 |53.9 73.8 623 [525 799 633|559 80.6 66.0
+ manual clusters | 544 739 626 (576 77.0 659 |525 828 64.2|57.1 83.0 676
+induced clusters |53.6 72.8 61.7 |552 75.0 63.6 |52.8 832 64.6|57.1 82.1 674

= Discussion
= When pseudo-instances are not used,
« the Tf-idf baseline significantly outperforms the LDA baseline
« the supervised baseline significantly outperforms the two unsupervised
baselines
 adding cluster-based features significantly improve the results of the
supervised baseline
= When pseudo-instances are used,
« adding cluster-based features significantly improve the results of the
supervised baseline
« results are significantly better than when no pseudo-instances are used
= Relative error reductions of 11.1-19.7% compared to the tf-idf baseline

