

# Recovering Traceability Links in Requirements Documents



## Zeheng Li<sup>1</sup>, Mingrui Chen<sup>1</sup>, LiGuo Huang<sup>1</sup>, and Vincent Ng<sup>2</sup>

<sup>1</sup>Southern Methodist University

<sup>2</sup>The University of Texas at Dallas

#### **Task**

- Given a set of high-level requirements and a set of low-level requirements, recover the traceability links between them
- Two requirements should be linked if one is a refinement of the other

### Example

Low-Level Requirements

#### High-Level Requirements

| HR01                                                                                  |  | UC01           |                                                                                                                                                                                             |  |  |  |  |
|---------------------------------------------------------------------------------------|--|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| The underlined character in each menu                                                 |  | Use case name: | store a contact's information                                                                                                                                                               |  |  |  |  |
| selection shall be a shortcut key. When control and the shortcut key are pressed, the |  | Summary:       | the address book should store a contact's name,<br>email, address and phone number                                                                                                          |  |  |  |  |
| menu selection should be loaded.                                                      |  |                | 1. enter "pine" command in terminal                                                                                                                                                         |  |  |  |  |
| HR02 The system shall have an address book available to store contacts.               |  | Description:   | cither enter "a" or use arrows to make "address book" line highlighted and enter "enter" 3. enter "@"     enter nickname, fullname, fcc, comment and addresses. may leave some fields blank |  |  |  |  |
| HR03                                                                                  |  |                | 5. press ctrl+x to save the entry                                                                                                                                                           |  |  |  |  |
| The system shall have a help system that offers tips and explanation for each screen  |  | UC02           |                                                                                                                                                                                             |  |  |  |  |
| and each item on the screens upon demand.                                             |  | Use case name: | access help system                                                                                                                                                                          |  |  |  |  |
|                                                                                       |  | Summary:       | user accesses help system                                                                                                                                                                   |  |  |  |  |

- Requirements traceability is many-to-many mapping:
  - A high-level requirement can be refined by multiple low-level requirements
  - · A low-level requirement can refine multiple high-level requirements
- HR01 is refined by UC01
  - · UC01 specifies the shortcut key for saving an entry in the address book
- HR02 is refined by UC01
  - UC01 specifies how to store contacts in the address book
- HR03 is refined by UC02
  - · Both of them are concerned with the help system

## Why is it important for Software Engineering?

- Software system development is guided by the evolution and refinement of
- Requirements specifications are refined with additional design details and implementation information as the development life cycle progresses

### Why is it challenging for NLP?

- Abundant information irrelevant to the link establishment
- Information irrelevant to the establishment of one link could be relevant to the establishment of another link involving the same requirement

### **Datasets**

- Pine Email system of University of Washington
- WorldVistA Health information system

| Datasets                                                       | Pine | WorldVistA |
|----------------------------------------------------------------|------|------------|
| <ul> <li># of high-level requirements</li> </ul>               | 49   | 29         |
| <ul> <li># of low-level requirements</li> </ul>                | 51   | 317        |
| <ul> <li>Avg. # of words per high-level requirement</li> </ul> | 17   | 18         |
| <ul> <li>Avg. # of words per low-level requirement</li> </ul>  | 148  | 26         |
| <ul> <li>Avg. # of links per high-level requirement</li> </ul> | 5.1  | 13.6       |
| <ul> <li>Avg. # of links per low-level requirement</li> </ul>  | 4.9  | 1.2        |
| <ul><li># of pairs that have links</li></ul>                   | 250  | 394        |
| <ul><li># of pairs that do not have links</li></ul>            | 2249 | 8799       |

### **Baseline Systems**

#### I. Unsupervised baselines

- Link two documents if their Cosine similarity exceeds a certain threshold
- > Employ two ways to represent a document
  - as a vector of unigrams
  - Feature values are the tf-idf values
  - $\blacksquare$  as a vector of n topics induced by an LDA model
    - · Feature values are the probabilities the document belongs to the topics
    - n = 10, 20, ..., 50 (Pine) and 50, 60, ..., 100 (WorldVistA)
    - n is tuned on test data (thus giving an unfair advantage to these

#### II. Supervised baseline

- Linking decisions made by a binary classifier trained using LibSVM
  - Create instances by pairing each high-level requirement with each low-level
  - Positive if the two requirements should be linked, and negative otherwise
  - Two types of binary-valued features:
    - Word pairs: a pair of words (w<sub>i</sub>, w<sub>i</sub>) from the high- and low-level documents respectively, indicating their presence in these documents
    - LDA-induced topic pairs: topic pair  $(t_i, t_i)$  whose value is 1 if  $t_i$  and  $t_i$  are the most probable topics for the high- and low-level requirements
  - C (the regularization parameter) is tuned on development data

### **Knowledge-rich Approach**

Goal: Improve supervised baseline using two types of human-supplied knowledge I. Noun and verb clusters

Two ways to create noun and verb clusters

- Manually
  - First define domain-relevant noun and verb categories, then populate them
- Pine: 8 noun clusters and 10 verb clusters
- WordVistA: 31 noun clusters and 14 verb clusters
- A time-consuming process
- Automatically (using single-link agglomerative clustering)
  - Each noun (verb) is represented using the verbs (nouns) it co-occurs with
  - We only cluster nouns/verbs in the training data that (1) have at least three characters, and (2) appear in only high-level or only low-level documents
- · Each noun/verb is initially in its own cluster
- In each iteration, it merges the two most similar clusters and stops when the desired number of clusters is reached
- Number of clusters: 10, 15, 20 (Pine) and 10, 20, 30, 40, 50 (WorldVistA)
- \*Use the manuad/indedgioiohhytwixlhcCcrediteefivemadditiizmaFtyposecofifedetuebspment data
  - Verb pairs: pairs of verbs collected from high- and low-level requirements
  - Verb group pairs: replace verbs in the verb pairs with their cluster ids • Noun pairs: pairs of nouns collected from high- and low-level requirements
  - Noun group pairs: replace nouns in the noun pair with their cluster ids
  - Dependency pairs: created by pairing each noun-verb pair found in high-level
  - requirement with each noun-verb pair found in low-level requirement
- ·Cluster-based features can provide better generalization than word-based features

#### II. Annotator rationales

- Rationales are words/phrases in a training document that are considered relevant to the classification task at hand by the human annotator
- •For each link in the training set, we asked the annotator to identify words/phrases from the associated requirements that are relevant to establishing the link
- Rationales are used to create two types of additional training instances
  - One pseudo positive instance is created from each positive training instance
  - · Created by first removing the rationales from the two requirements
  - Three pseudo negative instances are created from each negative training instance
  - The first is created by removing only rationales from high-level document
  - The second is created by removing only rationales from low-level document
- · The third is created by removing rationales from both requirements Potentially allow the learner to focus on learning from the relevant phrases
- - A1: The system shall have an address book available to store contacts.
  - > Terms in red are rationales that are helpful for recovering the link
  - > Retain terms in red results in pseudo positive instance
  - > Retain terms in blue results in pseudo negative instance

#### **Evaluation**

#### Evaluation metrics

- Recall: percentage of recovered links in the gold standard
- Precision: percentage of correctly recovered links
- F-score: unweighted harmonic mean of recall and precision
- Results

| System                                   | Pine         |              |              |                |              |              | WorldVistA   |              |              |                |              |              |
|------------------------------------------|--------------|--------------|--------------|----------------|--------------|--------------|--------------|--------------|--------------|----------------|--------------|--------------|
|                                          | No Pseudo    |              |              | Pseudo pos+neg |              |              | No Pseudo    |              |              | Pseudo pos+neg |              |              |
|                                          | R            | P            | F            | R              | P            | F            | R            | P            | F            | R              | P            | F            |
| Tf-idf Baseline                          | 73.6         | 43.3         | 54.5         |                |              |              | 60.4         | 37.8         | 46.5         | -              |              |              |
| LDA Baseline                             | 30.4         | 39.2         | 34.2         |                |              |              | 25.9         | 10.6         | 15.1         |                |              |              |
| Supervised baseline<br>+ manual clusters | 50.4<br>54.4 | 67.0<br>73.9 | 57.5<br>62.6 | 53.9<br>57.6   | 73.8<br>77.0 | 62.3<br>65.9 | 52.5<br>52.5 | 79.9<br>82.8 | 63.3<br>64.2 | 57.1           | 80.6<br>83.0 | 66.0<br>67.6 |
| + induced clusters                       | 53.6         | 72.8         | 61.7         | 55.2           | 75.0         | 63.6         | 52.8         | 83.2         | 64.6         | 57.1           | 82.1         | 67.4         |

#### Discussion

- When pseudo-instances are not used,
- · the Tf-idf baseline significantly outperforms the LDA baseline
- the supervised baseline significantly outperforms the two unsupervised baselines
- adding cluster-based features significantly improve the results of the supervised baseline
- When pseudo-instances are used,
- adding cluster-based features significantly improve the results of the supervised baseline
- results are significantly better than when no pseudo-instances are used
- Relative error reductions of 11.1-19.7% compared to the tf-idf baseline