Recovering Traceability Links in Requirements Documents

Zeheng Li Mingui Chen LiGuo Huang

Department of Computer Science and Engineering Southern Methodist University

Vincent Ng

Human Language Technology Research Institute
University of Texas at Dallas

What is a Software Requirement?

A **software requirement** is a description of a software system to be developed, laying out functional and non-functional requirements

What is Requirements Traceability?

Given:

- a set of high-level (coarse-grained) requirements
- a set of low-level (fine-grained) requirements

·Goal:

- Identify all the low-level requirements that refine each high-level requirement
- An important task in Software Engineering

High-level requirements

HR01

The underlined character in each menu shall be a shortcut key.

HR02

The system shall have an address book to store contacts.

Low-level requirements

UC01

Use case name:

store a contact's info

Summary:

the address book should store a contact's name, email and address

- 1. enter "pine" in terminal
- 2. enter "a" to make address book
- 3. enter "@"
- 4. enter nickname and fullname
- 5. press ctrl+x to save the entry

High-level requirements

HR01

The underlined character in each menu shall be a shortcut key.

HR02

The system shall have an address book to store contacts.

Low-level requirements

UC01

Use case name:

store a contact's info

Summary:

the address book should store a contact's name, email and address

- 1. enter "pine" in terminal
- 2. enter "a" to make address book
- 3. enter "@"
- 4. enter nickname and fullname
- 5. press ctrl+x to save the entry

High-level requirements

HR01

The underlined character in each menu shall be a shortcut key.

HR02

The system shall have an address book to store contacts.

Low-level requirements

UC01

Use case name:

store a contact's info

Summary:

the address book should store a contact's name, email and address

- 1. enter "pine" in terminal
- 2. enter "a" to make address book
- 3. enter "@"
- 4. enter nickname and fullname
- 5. press ctrl+x to save the entry

High-level requirements

HR01

The underlined character in each menu shall be a shortcut key.

HR02

The system shall have an address book to store contacts.

Goal:

induce a many-to-many mapping

Low-level requirements

UC01

Use case name:

store a contact's info

Summary:

the address book should store a contact's name, email and address

- 1. enter "pine" in terminal
- 2. enter "a" to make address book
- 3. enter "@"
- 4. enter nickname and fullname
- 5. press ctrl+x to save the entry

A very challenging NLP task

- ... for at least two reasons
 - Only a small portion of a document is relevant to the establishment of a link
 - Information relevant to the establishment of a link can be irrelevant to the establishment of another link

Previous Approaches

Manual approaches

Identify traceability links by hand

Automatic approaches

- Establish a link between two requirements if their cosine similarity exceeds a certain threshold
 - Each document is represented as a bag of words or a bag of LDA-induced topics

Our Approach

- A supervised, knowledge-rich approach
 - Extends a baseline that uses only word pairs as features with two types of human-supplied knowledge
 - Word/phrase clusters
 - Annotator rationales

Word Clusters

- Two clusterings provided by domain experts
 - a verb clustering and a noun clustering
 - cluster-based features provide better generalizations

Word Clusters

- Two clusterings provided by domain experts
 - a verb clustering and a noun clustering
 - cluster-based features provide better generalizations

-		_
3	Category	Terms
	System Operation	evoke, operate, set up, activate, log
	Message Search	search, find
	Contact	add, store, capture
	Manipulation	
-	Message	compose, delete, edit, save, print
	Manipulation	
	Folder	create, rename, delete, nest
	Manipulation	
	Message	reply, send, receive, forward, cc, bcc
	Communication	
	User Input	input, type, enter, press, hit, choose
	Visualization	display, list, show, prompt, highlight
	Movement	move,navigate
	Function	support, have, perform, allow, use

Category	Terms
Message	mail, message, email, e-mail, PDL, subjects
Contact	contact, addresses, multiple addresses
Folder	folder, folder list, tree structure
Location	address book, address field, entry, address
Platform	windows,unix,window system,unix system
Module	help system, spelling check, Pico, shell
Protocol	MIME,SMTP
Command	shortcut key, ctrl+c, ctrl+m, ctrl+p, ctrl+x

Word Clusters

- Two clusterings provided by domain experts
 - a verb clustering and a noun clustering
 - cluster-based features provide better generalizations
- Also attempted to induce the clusterings to reduce human effort in cluster creation

Category	Terms
System Operation	evoke, operate, set up, activate, log
Message Search	search, find
Contact Manipulation	add, store, capture
Message Manipulation	compose, delete, edit, save, print
Folder Manipulation	create, rename, delete, nest
Message Communication	reply, send, receive, forward, cc, bcc
User Input	input, type, enter, press, hit, choose
Visualization	display, list, show, prompt, highlight
Movement	move,navigate
Function	support, have, perform, allow, use

Category	Terms
Message	mail, message, email, e-mail, PDL, subjects
Contact	contact, addresses, multiple addresses
Folder	folder, folder list, tree structure
Location	address book, address field, entry, address
Platform	windows,unix,window system,unix system
Module	help system, spelling check, Pico, shell
Protocol	MIME,SMTP
Command	shortcut key, ctrl+c, ctrl+m, ctrl+p, ctrl+x

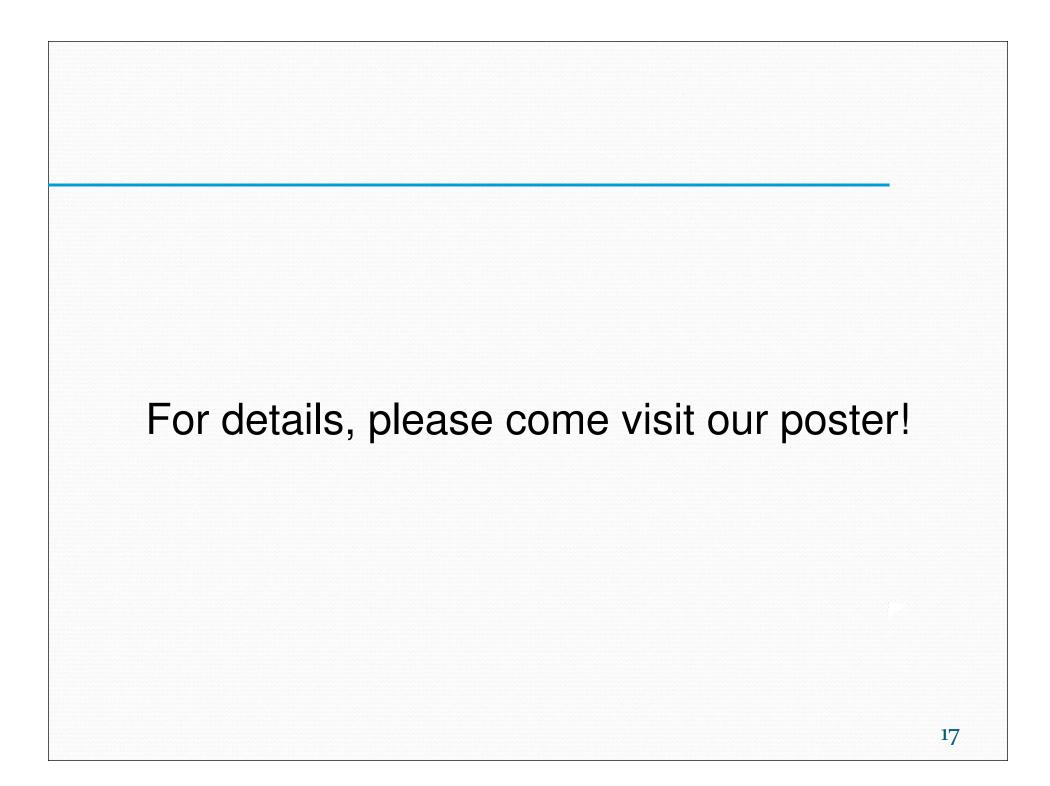
Annotator Rationales

- Proposed by Zaidan et al. (2007)
- Manually identify the words/phrases in each training document that are relevant to the establishment of a link (the rationales)
- Create additional training instances based on rationales
 - Allow the learner to train a better classifier by focusing on the relevant material

Evaluation

- Two datasets
 - Pine
 - 49 high-level requirements, 51 low-level requirements
 - Only 11% pairs have links

WorldVistA


- 29 high-level requirements, 317 low-level requirements
 - 3.5 times larger than Pine
- Only 5% pairs have links

Main Results

- When using both
 - annotator rationales (to create additional training instances)
 - word/phrase clusters (to create new features)

to train a SVM classifier, our approach reduces relative error by 11-20% in comparison to the word-pair supervised baseline

 Results obtained using manual clusters are as good as those obtained using induced clusters

