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Named Entity Recognition (NER) for morphologically-rich,
resource-scarce languages
@ Use Bengali as our representative language

@ Focus on identifying PERSON, ORGANIZATION, and
LOCATION




Challenges

@ Scarcity of NE-labeled data
e Unsupervised techniques for English NER (e.g., Collins and
Singer (1999)) are unlikely to work well

@ Problem: Lack of capitalization in Bengali

© Lack of publicly available gazetteers

© Inaccurate POS tagger
e Unsupervised POS induction techniques (e.g., distributional
clustering) are unlikely to work well
Problems: Distributional representation may not be reliable
for Bengali because of
o free word order
@ morphological inflections



Weaknesses of Existing Bengali NE Recognizers

@ Use their own manually-constructed gazetteers
e The results are not reproducible

@ Use pseudo-affixes (created by extracting the first n and
the last n characters of a word)

e The process is ad-hoc and may not cover many useful
affixes

@ Typically adopt a pipelined NER architecture

e Errors from the POS tagger are propagated to the NE
recognizer




Our Approach

Still supervised, but
@ we investigate two new features when used in a pipelined
architecture for POS tagging and NER:
@ affixes induced from an unannotated corpus
© semantic class information extracted from Wikipedia
@ we propose a joint model for learning POS tagging and
NER simultaneously
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© Pipelined NER with New Features
@ Evaluation

e Joint Model for POS Tagging and NER
@ Evaluation



Two New Linguistic Features
Induced Affixes
Semantic Classes from Wikipedia

Outline

0 Two New Linguistic Features
@ Induced Affixes




Two New Linguistic Features

Induced Affixes
Semantic Classes from Wikipedia

Affix Induction

Goal

For morphologically-rich languages, a lot of grammatical
information is expressed via affixes. Unlike previous
approaches, we learn affixes rather than using pseudo-affixes.

Approach: Keshava and Pitler's (2006) method

Assume that

(1) Vis a vocabulary extracted from a large, unannotated
corpus

(2) a and 3 are two character sequences

(3) ag is the concatenation of « and g

e if a8, a € V, we extract 3 as a candidate suffix
e if af, B € V, we extract o as a candidate prefix




Two New Linguistic Features

Induced Affixes
Semantic Classes from Wikipedia

Affix Induction (contd.)

Many of the induced affixes could be spurious.
Example: If both “can” and “candidate” are in V, then “didate” is
extracted as an induced suffix

Solution

@ Assign a score to each induced affix
© Select only those that score over a certain threshold

We use induced affix n-grams as features. These are like word
n-grams except that these are made of affixes.
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Two New Linguistic Features
Induced Affixes
Semantic Classes from Wikipedia

Semantic Class Induction from Wikipedia

@ Generate a list of phrases and tokens that are potentially
named entities from all the articles in the Bengali Wikipedia

© Heuristically annotate each of them with one of four
classes: PER (person), ORG (organization), LOC (location),
or OTHERS




Two New Linguistic Features
Induced Affixes
Semantic Classes from Wikipedia

Generating an Annotated List of Phrases

@ Generate and annotate the title of each article
(i) Use category information to annotate the title
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Two New Linguistic Features
Induced Affixes
Semantic Classes from Wikipedia

Generating an Annotated List of Phrases (contd.)

@ Generate and annotate the title of each article

(i) Use category information to annotate the title
(i) Use a small set of keywords to annotate the title
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Generating an Annotated List of Phrases (contd.)

NE Class | Keywords
PER “born,” “died,” “one,” “famous”
LoC “city,” “area,” “population,” “located,” “part of”
ORG “establish,” “situate,” “publish”

Table: Keywords for each named entity class
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Generating an Annotated List of Phrases (contd.)

@ Generate and annotate the title of each article

(i) Use category information to annotate the title
(i) Use a small set of keywords to annotate the title

© Getting more location names
© Generating and annotating the tokens in the titles
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Generating an Annotated List of Phrases (contd.)

Annotating the tokens in the titles

@ Assign each token the same NE label as that of its title
@ Ambiguous case:

Anna University

ORG ORG
Anna Frank
PER PER

@ Solution: Label “Anna” with its most frequent NE class
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Applying the Annotated List to a Text

Smith College is in Massachusetts
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Applying the Annotated List to a Text

Smith College is in Massachusetts
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Applying the Annotated List to a Text

Smith College is in Massachusetts
ORG  ORG
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Applying the Annotated List to a Text

Smith College is in  Massachusetts
ORG ORG OTHERS OTHERS LOC
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POS Tagging with New Features

Evaluation

POS Tagging

Investigate whether the two new features can improve a
baseline supervised POS tagger

Experimental setup

@ Corpus: 78K word tokens

@ Tagset: IlIT Hyderabad’s POS tagset with 26 tags
@ Learning algorithm: CRF

@ 5-fold cross-validation (CV)
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Evaluation

Features

Baseline

@ word n-grams, pseudo-affixes




POS Tagging with New Features

Evaluation

Experiment

Overall

Seen

Unseen

Baseline

89.8

92.9

72.0

Table: 5-fold cross-validation accuracies
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Features

Baseline+Induced Affixes
@ word n-grams, pseudo-affixes
@ induced affix n-grams




POS Tagging with New Features

Evaluation

Experiment Overall | Seen | Unseen
Baseline 89.8 92.9 72.0
Baseline+Induced Affixes 90.5 93.3 74.6

Table: 5-fold cross-validation accuracies
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Features

Baseline+Induced Affixes+Wiki
@ word n-grams, pseudo-affixes
@ induced affix n-grams
@ induced Wiki n-grams




POS Tagging with New Features

Evaluation

Experiment Overall | Seen | Unseen
Baseline 89.8 92.9 72.0
Baseline+Induced Affixes 90.5 93.3 74.6
Baseline+Induced Affixes+Wiki 90.8 93.5 75.5

Table: 5-fold cross-validation accuracies
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Evaluation

Pipelined NER with New Features

Investigate whether the two features can improve a pipelined
NE recognizer that uses induced POS tags as features

Experimental setup

@ Corpus: 78K word tokens

@ Learning algorithm: CRF
@ |OB convention
@ 5-fold cross-validation (CV)
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Features

Baseline
@ word n-grams, pseudo-affixes, POS n-grams




Pipelined NER with New Features

Evaluation

Experiment R P F

Baseline 60.9 | 74.4 | 67.0
Person 66.1 | 74.0 | 69.9
Organization 29.8 | 449 | 358
Location 52.6 | 80.4 | 63.6

Table: 5-fold cross-validation results
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Features

Baseline+Induced Affixes
@ word n-grams, pseudo-affixes, POS n-grams
@ induced affix n-grams




Pipelined NER with New Features

Evaluation

Experiment R P F

Baseline 609 | 74.4 | 67.0
Person 66.1 | 74.0 | 69.9
Organization 29.8 | 449 | 35.8
Location 52.6 | 80.4 | 63.6

Baseline+Induced Affixes 60.4 | 73.3 | 66.2
Person 65.7 | 72.6 | 69.0
Organization 31.7 | 46.4 | 37.7
Location 51.4 | 80.0 | 62.6

Table: 5-fold cross-validation results
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Features

Baseline+Induced Affixes+Wiki
@ word n-grams, pseudo-affixes, POS n-grams
@ induced affix n-grams
@ induced Wiki n-grams
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Pipelined NER with New Features

Experiment R P F
Baseline 609 | 74.4 | 67.0
Person 66.1 | 74.0 | 69.9
Organization 29.8 | 449 | 35.8
Location 52.6 | 80.4 | 63.6
Baseline+Induced Affixes 60.4 | 73.3 | 66.2
Person 65.7 | 72.6 | 69.0
Organization 31.7 | 46.4 | 37.7
Location 51.4 | 80.0 | 62.6
Baseline+Induced Affixes+Wiki 63.2 | 75.1 | 68.7
Person 66.4 | 75.1 | 70.5
Organization 30.7 | 43.8 | 36.1
Location 60.0 | 79.6 | 68.5

Table: 5-fold cross-validation results
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Pipelined NER with New Features

Experiment R P F
Baseline 609 | 74.4 | 67.0
Person 66.1 | 74.0 | 69.9
Organization 29.8 | 449 | 35.8
Location 52.6 | 80.4 | 63.6
Baseline+Induced Affixes 60.4 | 73.3 | 66.2
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Location 60.0 | 79.6 | 68.5

Table: 5-fold cross-validation results
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Evaluation

Joint Model for POS Tagging and NER

Joint Model

Jointly predict a word’s POS and NE tag to help avoid error
propagation

Model assumption

A Bengali word is part of an NE if and only if it is a proper noun.
For our evaluation corpus, this assumption is correct 97.3% of
the time.




Evaluation

Joint Model for POS Tagging and NER

Joint Model (contd.)

@ Jointly predicts a word’s POS and NE tag
@ Trained using CRF

e Features: POS and NE taggers’ features minus NE tagger’s
POS-related features

e Joint tag: If a word is not a proper noun, its class is simply
its POS tag. Otherwise, its class is its NE tag

Example:

Dhaka is the capital of Bangladesh
B-LOC VBZ DT NN IN  B-LOC
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NER Results for Joint Modeling

Experiment R P F

Baseline 54.7 | 81.7 | 65.5
Baseline+Induced Affixes 56.7 | 88.9 | 69.3
Baseline+Induced Affixes+Wiki 61.7 | 86.3 | 71.9

Table: 5-fold cross-validation joint modeling results for NER
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Comparison between Joint and Pipelined Model

Experiment R P F

Baseline 547 | 81.7 | 65.5
Baseline+Induced Affixes 56.7 | 88.9 | 69.3
Baseline+Induced Affixes+Wiki 61.7 | 86.3 | 71.9

Table: 5-fold cross-validation joint modeling results for NER

Experiment R P F

Baseline 60.9 | 74.4 | 67.0
Baseline+Induced Affixes 60.4 | 73.3 | 66.2
Baseline+Induced Affixes+Wiki 63.2 | 75.1 | 68.7

Table: 5-fold cross-validation results for NER
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Summary

@ Investigate the pipelined NER architecture and proposed
two new features:

e induced affixes
e semantic class information from Wikipedia
@ Proposed a joint model for learning POS tagging and NER
simultaneously
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