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Plan for the talk

S Noun phrase coreference resolution

S Baseline coreference resolution system
— standard machine learning approach

S Problems and potential solutions



Noun Phrase Coreference

ldentify all noun phrases that refer to the same entity

Queen Elizabeth set about transforming her husband,
King George VI, into a viable monarch. Logue,
a renowned speech therapist, was summoned to help

the King overcome his speech impediment...
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A Machine Learning Approach

§ Classification

— given a description of two noun phrases, NP;and NP;,
classify the pair as coreferent or not coreferent

coref ? coref ?
| | | |

[Queeln Elizabeth] set about transforming [her] [huslband],

not coref ?

Aone & Bennett [1995]; Connolly et al. [1994];
McCarthy & Lehnert [1995]; Soon, Ng & Lim [2001]



A Machine Learning Approach

S Clustering
— coordinates pairwise coreference decisions

Queen Elizabeth

Queen Elizabeth
her

coref

— > [Queen Elizabeth], «———
King George VI

not set about transforming NG nusband

coref L&l 2 Alga King George VI

[ husband] theKing
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Machine Learning Issues

§ Training data creation
§ Instance representation
S Learning algorithm

§ Clustering algorithm



Baseline System: Training Data Creation

§ Creating training instances
— texts annotated with coreference information

— one instance inst(NP;, NP;) for each pair of NPs
» assumption: NP; precedes NP;
» feature vector: describes the two NPs and context

» class value:
coref pairs on the same coreference chain
not coref otherwise



Baseline System: Instance Representation

§ 25 features per instance
— lexical (3)
— grammatical (18)
— semantic (2)
— positional (1)
— knowledge-based (1)



Baseline System: Learning Algorithm

S RIPPER (Cohen, 1995): positive rule learner

— Input: set of training instances
— output: coreference classifier

S Classifier outputs
— classification
— confidence of classification



Baseline System: Clustering Algorithm

S Best-first single-link clustering

CREATE-COREF-CHAINS (NP, NP,, ..., NP,)

Mark each NP, as belonging to its own class: NP; [ ¢

For each NP; do
Form an instance from NP; with each preceding NP
Let SNP;) = {NP; | NP; is classified as coreferent with NP, }
Let NP, = noun phrase in SNPJ) with highest confidence
¢ =¢Ucg



Baseline System: Evaluation

§ MUC-6 and MUC-7 coreference data sets
§ documents annotated w.r.t. coreference
S MUC-6: 30 training texts + 30 test texts
S MUC-7: 30 training texts + 20 test texts

S MUC scoring program
— recall, precision, F-measure



Baseline System: Results

MUC-6 MUC-7
R P F | R P F
Baseline 407 735 524 | 272 863 413
Worst MUC System 36 44 40 | 525 214 304
Best MUC System 59 72 65 | 56.1 688 61.8
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Problem 1

§ Coreference Is an equivalence relation
— loss of transitivity

coref ? coref ?
| | | |

[ Queen Elizabeth] set about transforming [her] [husband], ...

| |
not coref ?




Problem 2

§ Coreference Is a rare relation
— skewed class distributions

— MUC-6 and MUC-7 dry run data sets each contains
only 2% positive instances



Problem 3

S Coreference Is a discourse-level problem

— different solutions for different types of NPs
» pronouns: locality constraints
» proper names: string matching and aliasing

Queen Elizabeth set about transforming her husband,
King George VI, into a viable monarch. Logue,
the renowned speech therapist, was summoned to help

the King overcome his speech impediment...

— Inclusion of “hard” positive training instances
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Problem 3

S Coreference Is a discourse-level problem

— different solutions for different types of NPs
» pronouns: locality constraints
» proper names: string matching and aliasing

Queen Elizabeth set about transforming her husband, « -

|
— King George VI, into aviable monarch. Logue, ;
|
|

the renowned speech therapist, was summoned to help

theI King overcome his speech impediment...
|

— Inclusion of “hard” positive training instances



Classification-based Single-link Clustering

S Problems
— skewed class distributions
— Inclusion of hard positive training instances
— loss of transitivity



Skewed Class Distributions

S negative example selection
§ variant of the Soon et al. (2001) algorithm

S NEG-SELECT retains only negative instances for non-
coreferent NPs that lie between an anaphoric NP and its
farthest preceding antecedent



Negative Example Selection

S An example
— create negative instances from NP9

D



Negative Example Selection

Step 1: Create all possible negative instances from NP9

D



Negative Example Selection

Step 1: Create all possible negative instances from NP9




Negative Example Selection

Step 2: Locate the farthest antecedent of NP9 , f(NP9)




Negative Example Selection

Step 2: Locate the farthest antecedent of NP9, f(NP9)

.

farthest antecedent



Negative Example Selection

Step 3: Remove al instances involving NPs that precede f(NP9)

.

farthest antecedent



Negative Example Selection

Step 3: Remove al instances involving NPs that precede f(NP9)

farthest antecedent



Results (Negative Example Selection)

MUC-6 MUC-7
R P F|R P F
Baseline 407 735 524 | 272 863 4.3
NEG-SELECT 465 678 552 | 374 597  46.0

S % of positive instances: 8% (MUC-6) and 7% (MUC-7)

S gain in recall but larger loss in precision

S overall performance (F-measure) increases




Inclusion of Hard Training Instances

S positive example selection
S selects easy positive training instances
S automatic variant of the Harabagiu et al. (2001) algorithm

POS-SELECT(L: positiverule learner, T: set of training instances)

r epeat

Induce aranked set of positiverulesRon T using L

Let BestRule = best rulein R

Add BestRule to Final RuleSet

For each inst(NP;, NP;) O T correctly covered by BestRule,

remove all instances of the form inst(*, NP,) from T.

until L cannot induce any rule for the positive instances
return FinalRuleSet



Results (Positive Example Selection)

MUC-6 MUC-7
R P F|R P F
Baseline 407 735 524 | 272 863 4.3
NEG-SELECT 465 678 552 | 374 597  46.0
POS-SELECT 531 808 64.1 | 411 780 538
NEG-SELECT + POS-SELECT 634 763 693 | 595 551 572

S F-measure increases by 12% using POS-SELECT




Results (Positive Example Selection)

MUC-6 MUC-7
R P F|R P F
Baseline 407 735 524 | 272 863 4.3
NEG-SELECT 465 678 552 | 374 597  46.0
POS-SELECT 531 808 64.1 | 411 780 538
NEG-SELECT + POS-SELECT 634 763 693 | 595 551 57.2

S F-measure increases by 16-17% using both NEG-SELECT
and POS-SELECT




Results (Positive Example Selection)

MUC-6 MUC-7
R P F|R P F
Baseline 407 735 524 | 272 863 413
NEG-SELECT 465 678 552 | 374 597  46.0
POS-SELECT 531 808 64.1 | 411 780 538
NEG-SELECT + POS-SELECT 634 763 693 | 595 551 57.2

S using both NEG-SELECT and POS-SELECT leads to better

performance than using POS-SELECT alone




Loss of Transitivity

S rule pruning
§ tightens connection between classification and clustering

RULE-SELECT(R: ruleset, P: pruning corpus; S. scoring function)
et BestScore = score of the coref systemusing Ron P w.r.t. S
r epeat
Let r =therule in R whose removal yields a ruleset with
which coref system achievesthe best scorebon P w.r.t. S
If b > BestScore
then set BestScore to b and remover from R
otherwisereturn R
whiletrue

S optimizes w.r.t. the clustering-level coref scoring function



Results (Rule Selection)

MUC-6 MUC-7
R P F|R P F

Baseline 407 735 524 | 272 863 413
NEG-SELECT 465 678 552 | 374 597 460
POS-SELECT 531 808 641 | 411 780 538
NEG-SELECT + POS-SELECT 634 763 693 | 595 551 57.2
NEG-SELECT + POS-SELECT + RULE-SELECT | 633 769 695 | 542 763 634
NEG-SELECT + POS-SELECT (more data) 648 706 676 | 600 557 57.8

§ pruning corpus
— MUC-6: MUC-7 formal
— MUC-7: MUC-6 formal




Results (Rule Selection)

MUC-6 MUC-7
R P F|R P F
Baseline 407 735 524 | 272 863 413
NEG-SELECT 465 678 552 | 374 597 460
POS-SELECT 531 808 641 | 411 780 538
NEG-SELECT + POS-SELECT 634 763 693 | 595 551 57.2
NEG-SELECT + POS-SELECT + RULE-SELECT | 633 769 695 | 542 763 63.4
NEG-SELECT + POS-SELECT (more data) 648 706 676 | 600 557 57.8

§ gains in precision; increase in F-measure
S effective at improving precision




Results (Rule Selection)

MUC-6 MUC-7
R P F|R P F
Baseline 407 735 524 | 272 863 413
NEG-SELECT 465 678 552 | 374 597 460
POS-SELECT 531 808 641 | 411 780 538
NEG-SELECT + POS-SELECT 634 763 693 | 595 551 57.2
NEG-SELECT + POS-SELECT + RULE-SELECT | 633 769 695 | 542 763 63.4
NEG-SELECT + POS-SELECT (more data) 648 706 67.6 | 600 557 57.8

S RULE-SELECT has made a more effective use of the
additional data provided by the pruning corpus




Comparison with Best MUC Systems

MUC-6 MUC-7
R P F R P F
NEG-SELECT + POS-SELECT + RULE-SELECT | 63.3 769 69.5 | 542 763 634
Best MUC System 59 72 65 | 56.1 68.8 61.8

S performs better than the best MUC coreference systems




Summary

S Examined three problems with recasting noun phrase
coreference resolution as a classification task

S Showed how the problems can be handled via example
selection and error-driven pruning of classification rules

Properties of Coreference Problems Solutions
Coref is a rare relation .Sk.eW?d Negative gxample
distributions selection
. . Inclusion of hard | Positive example
Coref is a discourse-level problem . .
training instances selection
Coref is an equivalence relation Loss of transitivity Rule pruning




