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Plan for the talkPlan for the talk

§ Noun phrase coreference resolution

§ Baseline coreference resolution system
– standard machine learning approach

§ Problems and potential solutions 



Noun Phrase CoreferenceNoun Phrase Coreference

Identify all noun phrases that refer to the same entity

Queen Elizabeth set about transforming her husband, 

King George VI, into a viable monarch. Logue, 

a renowned speech therapist, was summoned to help

the King overcome his speech impediment... 
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A Machine Learning ApproachA Machine Learning Approach

§ Classification
– given a description of two noun phrases, NPi and NPj, 

classify the pair as coreferent or not coreferent

Aone & Bennett [1995]; Connolly et al. [1994]; 
McCarthy & Lehnert [1995]; Soon, Ng & Lim [2001]

[Queen Elizabeth] set about transforming [her] [husband], ... 

coref ?

not coref ?

coref ?
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A Machine Learning ApproachA Machine Learning Approach

Clustering 
Algorithm

Queen Elizabeth

her

Logue

a renowned 
speech therapist

Queen Elizabeth

Logue

§ Clustering
– coordinates pairwise coreference decisions

[Queen Elizabeth],

set about transforming

[her]                                

[husband]                 

... 

coref

not coref

not 

coref

King George VI



Machine Learning IssuesMachine Learning Issues

§ Training data creation

§ Instance representation

§ Learning algorithm

§ Clustering algorithm



Baseline System: Training Data CreationBaseline System: Training Data Creation

§ Creating training instances
– texts annotated with coreference information

– one instance inst(NPi, NPj) for each pair of NPs
» assumption: NPi precedes NPj

» feature vector: describes the two NPs and context
» class value: 

coref pairs on the same coreference chain
not coref otherwise



Baseline System: Instance RepresentationBaseline System: Instance Representation

§ 25 features per instance
– lexical (3)
– grammatical (18) 
– semantic (2)
– positional (1)
– knowledge-based (1) 



Baseline System: Learning AlgorithmBaseline System: Learning Algorithm

§ RIPPER (Cohen, 1995): positive rule learner
– input: set of training instances
– output: coreference classifier

§ Classifier outputs 
– classification
– confidence of classification



Baseline System: Clustering AlgorithmBaseline System: Clustering Algorithm

§ Best-first single-link clustering

CREATE-COREF-CHAINS (NP1, NP2, ..., NPn)

Mark each NPj as belonging to its own class: NPj ∈ cj

For each NPj do

Form an instance from NPj with each preceding NP
Let S(NPj) = {NPi | NPi is classified as coreferent with NPj}
Let NPk = noun phrase in S(NPj) with highest confidence
cj = cj ∪ ck 



Baseline System: EvaluationBaseline System: Evaluation

§ MUC-6 and MUC-7 coreference data sets

§ documents annotated w.r.t. coreference
§ MUC-6: 30 training texts + 30 test texts  

§ MUC-7: 30 training texts + 20 test texts 
§ MUC scoring program

– recall, precision, F-measure 



Baseline System: ResultsBaseline System: Results

MUC-6 MUC-7 
 

R P F R P F 

Baseline 40.7 73.5 52.4 27.2 86.3 41.3 

Worst MUC System 36 44 40 52.5 21.4 30.4 

Best MUC System 59 72 65 56.1 68.8 61.8 
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Problem 1Problem 1

§ Coreference is an equivalence relation
– loss of transitivity

[Queen Elizabeth] set about transforming [her] [husband], ...

coref ? coref ?

not coref ?



Problem 2Problem 2

§ Coreference is a rare relation
– skewed class distributions
– MUC-6 and MUC-7 dry run data sets each contains 

only 2% positive instances



Problem 3Problem 3

§ Coreference is a discourse-level problem
– different solutions for different types of NPs

» pronouns: locality constraints
» proper names: string matching and aliasing

– inclusion of “hard” positive training instances

Queen Elizabeth set about transforming her husband,

King George VI, into a viable monarch. Logue,

the renowned speech therapist, was summoned to help 

the King overcome his speech impediment... 
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Classification-based Single-link ClusteringClassification-based Single-link Clustering

§ Problems
– skewed class distributions
– inclusion of hard positive training instances
– loss of transitivity



Skewed Class DistributionsSkewed Class Distributions

§ negative example selection

§ variant of the Soon et al. (2001) algorithm

§ NEG-SELECT retains only negative instances for non-
coreferent NPs that lie between an anaphoric NP and its 
farthest preceding antecedent



Negative Example SelectionNegative Example Selection

§ An example
– create negative instances from NP9

NP3 NP4 NP5 NP6 NP7 NP8 NP9NP2NP1



Negative Example SelectionNegative Example Selection

NP3 NP4 NP5 NP6 NP7 NP8 NP9NP2NP1

Step 1: Create all possible negative instances from NP9
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Step 2: Locate the farthest antecedent of NP9 , f(NP9)
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Step 3: Remove all instances involving NPs that precede f(NP9)
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NP3 NP4 NP5 NP6 NP7 NP8 NP9NP2NP1

farthest antecedent
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Results (Negative Example Selection)Results (Negative Example Selection)

§ % of positive instances: 8% (MUC-6) and 7% (MUC-7)
§ gain in recall but larger loss in precision
§ overall performance (F-measure) increases 

MUC-6 MUC-7 
 

R P F R P F 

Baseline 40.7 73.5 52.4 27.2 86.3 41.3 

NEG-SELECT 46.5 67.8 55.2 37.4 59.7 46.0 
 

 



Inclusion of Hard Training InstancesInclusion of Hard Training Instances

§ positive example selection
§ selects easy positive training instances
§ automatic variant of the Harabagiu et al. (2001) algorithm

POS-SELECT(L: positive rule learner, T: set of training instances)

repeat
Induce a ranked set of positive rules R on T using L
Let BestRule = best rule in R
Add BestRule to FinalRuleSet
For each inst(NPi, NPj) ∈ T correctly covered by BestRule,

remove all instances of the form inst(*, NPj) from T.
until L cannot induce any rule for the positive instances
return FinalRuleSet



Results (Positive Example Selection)Results (Positive Example Selection)

§ F-measure increases by 12% using POS-SELECT
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Baseline 40.7 73.5 52.4 27.2 86.3 41.3 

NEG-SELECT 46.5 67.8 55.2 37.4 59.7 46.0 

POS-SELECT 53.1 80.8 64.1 41.1 78.0 53.8 

NEG-SELECT + POS-SELECT 63.4 76.3 69.3 59.5 55.1 57.2 
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§ F-measure increases by 16-17% using both NEG-SELECT
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Results (Positive Example Selection)Results (Positive Example Selection)

§ using both NEG-SELECT and POS-SELECT leads to better 
performance than using POS-SELECT alone

MUC-6 MUC-7 
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Loss of Transitivity Loss of Transitivity 

§ rule pruning
§ tightens connection between classification and clustering

RULE-SELECT(R: ruleset, P: pruning corpus; S: scoring function)

Let BestScore = score of the coref system using R on P w.r.t. S
repeat

Let r = the rule in R whose removal yields a ruleset with 
which coref system achieves the best score b on P w.r.t. S
If b > BestScore

then set BestScore to b and remove r from R
otherwise return R

while true

§ optimizes w.r.t. the clustering-level coref scoring function



Results (Rule Selection)Results (Rule Selection)

§ pruning corpus
– MUC-6: MUC-7 formal
– MUC-7: MUC-6 formal
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Results (Rule Selection)Results (Rule Selection)

§ gains in precision; increase in F-measure
§ effective at improving precision
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Results (Rule Selection)Results (Rule Selection)

§ RULE-SELECT has made a more effective use of the 
additional data provided by the pruning corpus
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Comparison with Best MUC SystemsComparison with Best MUC Systems

§ performs better than the best MUC coreference systems

MUC-6 MUC-7 
 

R P F R P F 

NEG-SELECT + POS-SELECT + RULE-SELECT 63.3  76.9 69.5 54.2 76.3 63.4 

Best MUC System 59 72 65 56.1 68.8 61.8 
 

 



SummarySummary

§ Examined three problems with recasting noun phrase
coreference resolution as a classification task

§ Showed how the problems can be handled via example 
selection and error-driven pruning of classification rules

Properties of Coreference Problems Solutions

Coref is a rare relation
Skewed

distributions
Negative example

selection

Coref is a discourse-level problem
Inclusion of hard
training instances

Positive example
selection

Coref is an equivalence relation Loss of transitivity Rule pruning


