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Noun Phrase Coreference

ldentify all noun phrases that refer to the same entity

Queen Elizabeth set about transforming her husband,
King George VI, into a viable monarch. Logue,
a renowned speech therapist, was summoned to help

the King overcome his speech impediment...
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Standard Machine Learning Framework

u Classification

» given a description of two noun phrases, NP;and NP;,
classify the pair as coreferent or not coreferent

coref ? coref ?
| | |

[Queeln Elizabeth] set about transforming [her] [husPand],

not coref ?

Aone & Bennett [1995]; Connolly et al. [1994]; McCarthy & Lehnert [1995];
Ng & Cardie [2002]; Soon, Ng & Lim [2001]



Standard Machine Learning Framework

u Clustering
» coordinates pairwise coreference decisions
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Supervised vs. Weakly Supervised Approaches

u Differ only in the amount of labeled data used to train the
coreference classifier

u The clustering mechanism is the same in both cases
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Related Work (Harabagiu et al., 2001)

u Bootstrap knowledge sources for coreference resolution
of common nouns using WordNet
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Related Work (Muller et al., 2002)

u Use co-training to bootstrap classifiers for resolution of
German anaphors

u Co-training shows no performance improvements for any
type of anaphor except pronouns over a baseline classifier
trained on a small set of labeled data

u Suggest that view factorization is non-trivial for reference
resolution for which no natural feature split has been found

» do not investigate different methods for feature splitting
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Related Work (Ng and Cardie, HLT-NAACL 2003)

u Investigate bootstrapping methods for coreference
resolution

» different methods for view factorization for co-training
» single-view bootstrapping methods
self-training with bagging (Banko and Brill, 2001)
weakly supervised EM (Nigam et al., 2000)

u Co-training Is sensitive to the choice of views

u Single-view weakly supervised learners are a viable
alternative to co-training for bootstrapping coreference
classifiers
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Goal of the Study

u Further investigate methods for bootstrapping coreference
classifiers that do not require explicit view factorization

» use different learning algorithms in lieu of different views
(Steedman et al., 2003; Goldman and Zhou, 2000)

» propose a general method for ranking unlabeled instances to
be fed back into the bootstrapping loop
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A Bootstrapping Algorithm for Coreference

u Does not require explicit view factorization

u Combines ideas of two existing co-training algorithms
» Steedman et al. (EACL, 2003)
» Goldman and Zhou (ICML, 2000)
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The Blum and Mitchell Co-Training Algorithm

u Given: L (labeled data), U (unlabeled data),
V., V, (views)
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The Blum and Mitchell Co-Training Algorithm

u Given: L (labeled data), U (unlabeled data),
V., V, (views)

u repeat
» train a classifier h, on V, of L
» train a classifier h, on V,, of L
form a data pool D by randomly selecting d instances from U
use h, to label instances in D
use h, to label instances in D
add the g most confidently labeled instances by h, to L
add the g most confidently labeled instances by h, to L
replenish D by 2*g instances

v v VvV VvV vV v
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The Steedman et al. Co-Training Algorithm

u A variation of the Blum and Mitchell algorithm applied to
statistical parsing

u Differs from Blum and Mitchell in three respects

» use two diverse parsers to substitute for the two views
the two parsers correspond to coarsely different features

» data pool is flushed after each iteration

» each parser labels unlabeled sentences for the other parser
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Our Bootstrapping Algorithm

u A variation of the Steedman et al. algorithm

u Use two different learning algorithms that have access to
the same feature set (cf. Goldman and Zhou (2000))

u The learners should be chosen so that the classifiers are
» accurate
» complementary
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Our Bootstrapping Algorithm

u A variation of the Steedman et al. algorithm

u Use two different learning algorithms that have access to
the same feature set (cf. Goldman and Zhou (2000))

u The learners should be chosen so that the classifiers are
» accurate
» complementary

u Learning algorithms
» nalve Bayes
» decision list learner (Collins and Singer, 1999)
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Evaluation

u Evaluate the performance of our single-view, multi-learner
bootstrapping algorithm (SVML) on coreference resolution

u Compare SVML against three baselines
» No bootstrapping
» Co-training

» Self-training
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Bootstrapping Experiments

Bootstrapping? Multiple Views?  Multiple Learners?
No Bootstrapping
Co-Training / /
SVML J S
Self-Training /
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Data Sets

u MUC-6 and MUC-7 coreference data sets
» documents annotated with coreference information
» MUC-6: 30 dryrun texts + 30 evaluation texts
» MUC-7: 30 dryrun texts + 20 evaluation texts

u  Evaluation texts are reserved for testing

u From the dryrun texts
» 1000 randomly selected instances as labeled data (L)
» remaining instances as unlabeled data (U)

u Results averaged across five independent runs
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Results: No Bootstrapping

u train a classifier on 1000 instances using all of the features

MUC-6 MUC-7
Nalve Bayes Decision List Naive Bayes Decision List
R P F|R P F|R P F|R P F
No Bootstrapping | 50.7 52.6 51.6 | 179 720 28.7 | 401 402 401 | 324 783 45.8
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Experiments: Co-Training

u Training
» bootstrap two view classifiers using L and U under different
combinations of views, pool sizes and growth sizes
» Input parameters

views (3 heuristic methods for view factorization):
Mueller et al.’s (2002) greedy method, random splitting,
splitting according to the feature type

data pool size: 500, 1000, 5000
growth size: 10, 50, 100, 200

u Testing
» each classifier makes an independent decision

» final prediction: decision associated the higher confidence
36



Results: Co-Training

MUC-6 MUC-7
Nalve Bayes Decision List Naive Bayes Decision List
R P F|R P F|R P F|R P F
No Bootstrapping | 50.7 52.6 51.6 | 179 720 28.7 | 401 402 40.1 | 324 783 45.8
Co-Training 33.3 90.7 48.7 | 195 712 306 | 329 763 46.0 | 324 783 45.8

u Co-training produces improvements over the baseline in only
two of the four classifier/data set combinations
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Experiments: SVML

u Training

» bootstrap two classifiers with the same view using L and U
under different combinations of pool sizes and growth sizes

» Input parameters
data pool size: 500, 1000, 5000
growth size: 10, 50, 100, 200

u Testing
» one of the classifiers is chosen to make predictions
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Results: SVML
MUC-6 MUC-7
Nalve Bayes Decision List Naive Bayes Decision List
R P F R P F R P F R P F
No Bootstrapping | 50.7 52.6 51.6 | 179 720 28.7 | 401 40.2 401 | 324 783 45.8
Co-Training 333 90.7 487|195 712 306 | 329 763 46.0 | 324 783 458
SVML 536 79.0 639 | 401 831 541 | 435 732 546 | 383 754 50.8

u SVML outperforms co-training in all cases
» simultaneous rise in recall and precision
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Experiments: Self-Training

u Additional check that the decision lists and naive Bayes
classifiers are benefiting from each other

u At each self-training iteration, the classifier
» labels all 5000 instances in the data pool

» adds the most confidently labeled 50 instances to the
labeled data
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Results: Self-Training
MUC-6 MUC-7

Nalve Bayes Decision List Naive Bayes Decision List

R P F|R P F|R P F|R P F
No Bootstrapping | 50.7 52.6 51.6 | 179 720 28.7 | 401 402 40.1 | 324 783 45.8
Co-Training 33.3 90.7 48.7 | 195 712 306 | 329 763 46.0 | 324 783 45.8
SVML 536 790 639 | 401 831 541|435 732 546 | 383 754 508
Self-Training 483 635 549 | 187 708 29.6 | 401 40.2 401 | 329 781 46.3

u Self-training only yields marginal gains over the baseline

43




Plan for the Talk

u

u

u

u An example ranking method for bootstrapping

44



F-measure Learning Curves (MUC-6)
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An Alternative Ranking Method

u Goal
» alleviate the problem of performance deterioration

u Hypothesis

» the drop Is caused by the degradation in the quality of the
bootstrapped data (cf. Pierce and Cardie, 1999)

» a more “conservative” example ranking method can help

u Motivated by Steedman et al. (HLT-NAACL 2003)

» use example selection methods to explore the trade-off
between maximizing coverage and maximizing accuracy
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The Ranking Method

u Ranks instances based on three preferences

u Preference 1: favors instances whose label is agreed upon
by both classifiers

u Preference 2: favors instances that are confidently labeled
by one classifier but not both

u Preference 3: ranks according to Blum and Mitchell’'s
rank-by-confidence method
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Effects of the Ranking Methods (MUC-6)
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Summary

u Proposed a single-view, multi-learner bootstrapping
algorithm for coreference resolution and showed that the
algorithm is a better alternative to co-training for this task

u Investigated an example ranking method for bootstrapping
that can potentially alleviate the problem of performance
deterioration in the course of bootstrapping
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