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Plan for the Talk

u Noun phrase coreference resolution

u Standard machine learning framework

u Weakly supervised approaches
� related work
�our bootstrapping algorithm

u Evaluation

u An example ranking method for bootstrapping
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Noun Phrase Coreference

Identify all noun phrases that refer to the same entity

Queen Elizabeth set about transforming her husband, 

King George VI, into a viable monarch. Logue, 

a renowned speech therapist, was summoned to help

the King overcome his speech impediment... 
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u Classification
�given a description of two noun phrases, NPi and NPj, 

classify the pair as coreferent or not coreferent

[Queen Elizabeth] set about transforming [her] [husband], ... 

coref ?

not coref ?

coref ?

Standard Machine Learning Framework

Aone & Bennett [1995]; Connolly et al. [1994]; McCarthy & Lehnert [1995]; 

Ng & Cardie [2002]; Soon, Ng & Lim [2001]
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husband

King George VI

the King

his

Clustering 
Algorithm

Queen Elizabeth

her

Logue

a renowned 
speech therapist

Queen Elizabeth

Logue

u Clustering
�coordinates pairwise coreference decisions

[Queen Elizabeth],

set about transforming

[her]                                

[husband]                 

... 

coref

not coref

not 

coref

King George VI

Standard Machine Learning Framework
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Supervised vs. Weakly Supervised Approaches

u Differ only in the amount of labeled data used to train the 
coreference classifier

u The clustering mechanism is the same in both cases
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Related Work (Harabagiu et al., 2001)

u Bootstrap knowledge sources for coreference resolution  
of common nouns using WordNet
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Related Work (Müller et al., 2002)

u Use co-training to bootstrap classifiers for resolution of 
German anaphors

u Co-training shows no performance improvements for any 
type of anaphor except pronouns over a baseline classifier 
trained on a small set of labeled data

u Suggest that view factorization is non-trivial for reference 
resolution for which no natural feature split has been found
� do not investigate different methods for feature splitting
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Related Work (Ng and Cardie, HLT-NAACL 2003)

u Investigate bootstrapping methods for coreference 
resolution
� different methods for view factorization for co-training
� single-view bootstrapping methods 

n self-training with bagging (Banko and Brill, 2001)
n weakly supervised EM (Nigam et al., 2000)

u Co-training is sensitive to the choice of views

u Single-view weakly supervised learners are a viable 
alternative to co-training for bootstrapping coreference
classifiers
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Goal of the Study

u Further investigate methods for bootstrapping coreference 
classifiers that do not require explicit view factorization

� use different learning algorithms in lieu of different views 
(Steedman et al., 2003; Goldman and Zhou, 2000)

� propose a general method for ranking unlabeled instances to 
be fed back into the bootstrapping loop
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A Bootstrapping Algorithm for Coreference

u Does not require explicit view factorization

u Combines ideas of two existing co-training algorithms
� Steedman et al. (EACL, 2003)
� Goldman and Zhou (ICML, 2000)
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The Blum and Mitchell Co-Training Algorithm

u Given: L (labeled data), U (unlabeled data), 
V1, V2 (views)
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The Blum and Mitchell Co-Training Algorithm

u Given: L (labeled data), U (unlabeled data), 
V1, V2 (views)

u repeat
� train a classifier h1 on V1 of L
� train a classifier h2 on V2 of L
� form a data pool D by randomly selecting d instances from U
� use h1 to label instances in D
� use h2 to label instances in D
� add the g most confidently labeled instances by h1 to L
� add the g most confidently labeled instances by h2 to L
� replenish D by 2*g instances
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The Steedman et al. Co-Training Algorithm

u A variation of the Blum and Mitchell algorithm applied to 
statistical parsing

u Differs from Blum and Mitchell in three respects

� use two diverse parsers to substitute for the two views
n the two parsers correspond to coarsely different features

� data pool is flushed after each iteration

� each parser labels unlabeled sentences for the other parser
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Our Bootstrapping Algorithm

u A variation of the Steedman et al. algorithm

u Use two different learning algorithms that have access to 
the same feature set (cf. Goldman and Zhou (2000))

u The learners should be chosen so that the classifiers are
� accurate
� complementary
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Our Bootstrapping Algorithm

u A variation of the Steedman et al. algorithm

u Use two different learning algorithms that have access to 
the same feature set (cf. Goldman and Zhou (2000))

u The learners should be chosen so that the classifiers are
� accurate
� complementary

u Learning algorithms
� naïve Bayes
� decision list learner (Collins and Singer, 1999)



September1999
29

Plan for the Talk

u Noun phrase coreference resolution

u Standard machine learning framework

u Weakly supervised approaches
� related work
�our bootstrapping algorithm

u Evaluation

u An example ranking method for bootstrapping



September1999
30

Evaluation

u Evaluate the performance of our single-view, multi-learner 
bootstrapping algorithm (SVML) on coreference resolution 

u Compare SVML against three baselines

� No bootstrapping

� Co-training

� Self-training
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Bootstrapping Experiments

 Bootstrapping? Multiple Views? Multiple Learners?  

No Bootstrapping    

Co-Training    

SVML    

Self-Training    
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Data Sets

u MUC-6 and MUC-7 coreference data sets
� documents annotated with coreference information
� MUC-6: 30 dryrun texts + 30 evaluation texts
� MUC-7: 30 dryrun texts + 20 evaluation texts

u Evaluation texts are reserved for testing

u From the dryrun texts
� 1000 randomly selected instances as labeled data (L)
� remaining instances as unlabeled data (U)

u Results averaged across five independent runs 
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Results: No Bootstrapping

u train a classifier on 1000 instances using all of the features

 MUC-6 MUC-7 
 Naive Bayes Decision List Naive Bayes Decision List 
 R P F R P F R P F R P F 

No Bootstrapping 50.7 52.6 51.6 17.9 72.0 28.7 40.1 40.2 40.1 32.4 78.3 45.8 
 

 



September1999
35

Bootstrapping Experiments

 Bootstrapping? Multiple Views? Multiple Learners?  

No Bootstrapping    

Co-Training    

SVML    

Self-Training    
 

 



September1999
36

Experiments: Co-Training

u Training
� bootstrap two view classifiers using L and U under different 

combinations of views, pool sizes and growth sizes
� input parameters

n views (3 heuristic methods for view factorization):     
Mueller et al.’s (2002) greedy method, random splitting, 
splitting according to the feature type 

n data pool size: 500, 1000, 5000
n growth size: 10, 50, 100, 200

u Testing
� each classifier makes an independent decision
� final prediction: decision associated the higher confidence
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Results: Co-Training

u Co-training produces improvements over the baseline in only 
two of the four classifier/data set combinations 

 MUC-6 MUC-7 
 Naive Bayes Decision List Naive Bayes Decision List 
 R P F R P F R P F R P F 

No Bootstrapping 50.7 52.6 51.6 17.9 72.0 28.7 40.1 40.2 40.1 32.4 78.3 45.8 

Co-Training 33.3 90.7 48.7 19.5 71.2 30.6 32.9 76.3 46.0 32.4 78.3 45.8 
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Experiments: SVML

u Training
� bootstrap two classifiers with the same view using L and U 

under different combinations of pool sizes and growth sizes
� input parameters

n data pool size: 500, 1000, 5000
n growth size: 10, 50, 100, 200

u Testing
� one of the classifiers is chosen to make predictions
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Results: SVML

u SVML outperforms co-training in all cases
� simultaneous rise in recall and precision

 MUC-6 MUC-7 
 Naive Bayes Decision List Naive Bayes Decision List 
 R P F R P F R P F R P F 

No Bootstrapping 50.7 52.6 51.6 17.9 72.0 28.7 40.1 40.2 40.1 32.4 78.3 45.8 

Co-Training 33.3 90.7 48.7 19.5 71.2 30.6 32.9 76.3 46.0 32.4 78.3 45.8 

SVML 53.6 79.0 63.9 40.1 83.1 54.1 43.5 73.2 54.6 38.3 75.4 50.8 
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Experiments: Self-Training

u Additional check that the decision lists and naïve Bayes 
classifiers are benefiting from each other

u At each self-training iteration, the classifier
� labels all 5000 instances in the data pool
� adds the most confidently labeled 50 instances to the  

labeled data 
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Results: Self-Training

u Self-training only yields marginal gains over the baseline

 MUC-6 MUC-7 
 Naive Bayes Decision List Naive Bayes Decision List 
 R P F R P F R P F R P F 

No Bootstrapping 50.7 52.6 51.6 17.9 72.0 28.7 40.1 40.2 40.1 32.4 78.3 45.8 

Co-Training 33.3 90.7 48.7 19.5 71.2 30.6 32.9 76.3 46.0 32.4 78.3 45.8 

SVML 53.6 79.0 63.9 40.1 83.1 54.1 43.5 73.2 54.6 38.3 75.4 50.8 

Self-Training 48.3 63.5 54.9 18.7 70.8 29.6 40.1 40.2 40.1 32.9 78.1 46.3 
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F-measure Learning Curves (MUC-6)
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An Alternative Ranking Method

u Goal
� alleviate the problem of performance deterioration

u Hypothesis 
� the drop is caused by the degradation in the quality of the 

bootstrapped data (cf. Pierce and Cardie, 1999)
� a more “conservative” example ranking method can help

u Motivated by Steedman et al. (HLT-NAACL 2003)
� use example selection methods to explore the trade-off 

between maximizing coverage and maximizing accuracy
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The Ranking Method

u Ranks instances based on three preferences

u Preference 1: favors instances whose label is agreed upon 
by both classifiers

u Preference 2: favors instances that are confidently labeled 
by one classifier but not both

u Preference 3: ranks according to Blum and Mitchell’s 
rank-by-confidence method



September1999
48

Effects of the Ranking Methods (MUC-6)

45

50

55

60

65

0 400 800 1200 1600 2000 2400 2800 3200 3600 4000

Number of Iterations

B&M
Ours



September1999
49

Summary

u Proposed a single-view, multi-learner bootstrapping 
algorithm for coreference resolution and showed that the 
algorithm is a better alternative to co-training for this task

u Investigated an example ranking method for bootstrapping 
that can potentially alleviate the problem of performance 
deterioration in the course of bootstrapping


