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Coreference

� Identify the noun phrases (or mentions) that refer to the 
same real-world entity

Queen Elizabeth set about transforming her husband, 

King George VI, into a viable monarch. A renowned

speech therapist, was summoned to help the King

overcome his speech impediment... 
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Coreference

� Identify the noun phrases (or mentions) that refer to the 
same real-world entity

� Lots of prior work on supervised coreference resolution
� Soon et al. (2001), Strube et al. (2002), Yang et al. (2003),   

Luo et al. (2004), Denis and Baldridge (2007), …

Queen Elizabeth set about transforming her husband, 

King George VI, into a viable monarch. A renowned

speech therapist, was summoned to help the King

overcome his speech impediment... 



8

Unsupervised Coreference Resolution

Perform coreference resolution using

little or no annotated data
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Previous Work

� Apply a weakly supervised or unsupervised learning 
algorithm to pronoun resolution

� co-training (Müller et al., 2002)

� self-training (Kehler et al., 2004)

� EM (Cherry and Bergsma, 2005)
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Previous Work

� Apply a weakly supervised or unsupervised learning 
algorithm to pronoun resolution

� co-training (Müller et al., 2002)

� self-training (Kehler et al., 2004)

� EM (Cherry and Bergsma, 2005)

� A nonparametric fully-Bayesian approach to unsupervised 
coreference resolution (Haghighi and Klein, 2007)
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Goals

� Design a new model for unsupervised coreference resolution 

� Improve Haghighi and Klein’s model with three modifications
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Unsupervised Coreference as EM Clustering

� Design a generative model that can be used to induce a 
clustering of the mentions in a given document
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Representing a Clustering

� A clustering C of n mentions is an n x n Boolean matrix, 
where Cij = 1 iff mentions i and j are coreferent
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� A clustering C of n mentions is an n x n Boolean matrix, 
where Cij = 1 iff mentions i and j are coreferent
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� A clustering C of n mentions is an n x n Boolean matrix, 
where Cij = 1 iff mentions i and j are coreferent

Representing a Clustering

Don’t care about 
diagonal entries
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Representing a Clustering

� A clustering C of n mentions is an n x n Boolean matrix, 
where Cij = 1 iff mentions i and j are coreferent

Don’t care about entries 
below the diagonal
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� A clustering C of n mentions is an n x n Boolean matrix, 
where Cij = 1 iff mentions i and j are coreferent
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Representing a Clustering

Transitive
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Representing a Clustering

� A clustering C of n mentions is an n x n Boolean matrix, 
where Cij = 1 iff mentions i and j are coreferent
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The Generative Model

� Given a document D,
� generate a clustering C according to P(C)
� generate D given C
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The Generative Model

� Given a document D,
� generate a clustering C according to P(C)
� generate D given C

How to generate D given C?
� Assume that D is represented by its mention pairs
� To generate D, generate all pairs of mentions in D

� (Queen Elizabeth, her), (Queen Elizabeth, husband), 
(Queen Elizabeth, King George VI), …

)|()(),( CDPCPCDP =
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The Generative Model

� Given a document D,
� generate a clustering C according to P(C)
� generate D given C

)|()(),( CDPCPCDP =
)|()( ...,14,13,12 CmpmpmpPCP=

mpij is the pair formed from 
mention i and mention j
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The Generative Model

� Given a document D,
� generate a clustering C according to P(C)
� generate D given C

Let’s simplify this term

)|()(),( CDPCPCDP =
)|()( ...,14,13,12 CmpmpmpPCP=
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)|()( ...,14,13,12 CmpmpmpPCP=

The Generative Model

� Given a document D,
� generate a clustering C according to P(C)
� generate D given C

Let’s simplify this term
� assume that each mention pair mpij is generated 

conditionally independently given Cij

)|()(),( CDPCPCDP =
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The Generative Model

� Given a document D,
� generate a clustering C according to P(C)
� generate D given C

)|()(),( CDPCPCDP =

)|()(
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)|()(
)(∏=

DPairs ijij CmpPCP

The Generative Model

� Given a document D,
� generate a clustering C according to P(C)
� generate D given C

How to represent a mention pair mpij?

)|()(),( CDPCPCDP =
)|()( ...,14,13,12 CmpmpmpPCP=
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Strong Coreference 
Indicators 

String match 
Appositive 
Alias (one is an acronym or abbreviation of the other) 

Linguistic 
Constraints 

Gender agreement 
Number agreement 
Semantic compatibility 

Mention Type Pairs (ti, tj), where ti, tj  ∈ { Pronoun, Name, Nominal } 
 

 

Features

� Use 7 linguistic features divided into 3 groups
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� Given a document D,
� generate a clustering C according to P(C)
� generate D given C

)|()(
)(∏=

DPairs ijij CmpPCP

The Generative Model

)|()(),( CDPCPCDP =
)|()( ...,14,13,12 CmpmpmpPCP=
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The Generative Model

� Given a document D,
� generate a clustering C according to P(C)
� generate D given C

7 feature values

)|()(),( CDPCPCDP =
)|()( ...,14,13,12 CmpmpmpPCP=

)|()(
)(∏=

DPairs ijij CmpPCP
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The Generative Model

� Given a document D,
� generate a clustering C according to P(C)
� generate D given C

Let’s simplify this term
� assume that feature values from different groups are 

conditionally independent of each other

)|()(),( CDPCPCDP =
)|()( ...,14,13,12 CmpmpmpPCP=

)|()(
)(∏=

DPairs ijij CmpPCP

)|()(
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The Generative Model

� Given a document D,
� generate a clustering C according to P(C)
� generate D given C

)|()(),( CDPCPCDP =
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)|( 7 cmpP

Model Parameters
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Model Parameters

)|( 3
,

2
,

1 cmpmpmpP

)|( 6
,

5
,

4 cmpmpmpP

)|( 7 cmpP

imp are the feature values

∈ { Coref, Not Coref }c

Next step : use EM to iteratively
� estimate the model parameters
� probabilistically induce a clustering for a document
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The Induction Algorithm

� Given a set of unlabeled documents
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The Induction Algorithm

� Given a set of unlabeled documents
� guess a clustering for each document according to P(C)

Initial labelings are 
presumably noisy
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The Induction Algorithm

� Given a set of unlabeled documents
� guess a clustering for each document according to P(C)

� estimate the model parameters based on the 
automatically labeled documents (M-step)
� maximum likelihood estimation

� assign a probability to each possible clustering of the 
mentions for each document (E-step)

3 mentions: 1, 2, 3                                             

[123] [12][3][13][2] [1][23][1][2][3] + invalid clusterings
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The Induction Algorithm

� Given a set of unlabeled documents
� guess a clustering for each document according to P(C)

� estimate the model parameters based on the 
automatically labeled documents (M-step)
� maximum likelihood estimation

� assign a probability to each possible clustering of the 
mentions for each document (E-step)

3 mentions: 1, 2, 3                                             

+ invalid clusterings[123] [12][3][13][2] [1][23][1][2][3]

0.23 0.21 0.11 0.29 0.05 …

Iterate till convergence

How to cope with the 
computational complexity 

of the E-step?
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Approximating the E-step

� Search for the N most probable clusterings only
� using Luo et al.’s (2004) search algorithm
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Approximating the E-step

� Search for the N most probable clusterings only
� using Luo et al.’s (2004) search algorithm
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[123]

[12][3]

[13][2]
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[1][2][3]

performs a beam 
search, expanding the 
most promising paths
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Approximating the E-step

� Search for the N most probable clusterings only
� using Luo et al.’s (2004) search algorithm

scores a path based on 
pairwise coreference
probabilities

[1]

[12]

[1][2]

[123]

[12][3]

[13][2]

[1][23]

[1][2][3]

performs a beam 
search, expanding the 
most promising paths
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� Given a set of unlabeled documents
� guess a clustering for each document according to P(C)

� estimate the model parameters based on the 
automatically labeled documents (M-step)
� maximum likelihood estimation

� assign a probability to each possible clustering of the 
mentions of each document (E-step)
� use the normalized scores of the 50-best clusterings

The Induction Algorithm

Iterate till convergence
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� Design a new model for unsupervised coreference resolution 

� Improve Haghighi and Klein’s model with three modifications

Goals
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Haghighi and Klein’s Model

� Cluster-level model
� assigns a cluster id to each mention
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Haghighi and Klein’s Model

� Cluster-level model
� assigns a cluster id to each mention
� ensures transitivity automatically

Queen Elizabeth set about transforming her husband, 

King George VI, into a viable monarch. A renowned

speech therapist, was summoned to help the King

overcome his speech impediment... 

1 1 2

2 3

4 2

2 5
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Haghighi and Klein’s Generative Story
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cluster-specific head distribution)
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Haghighi and Klein’s Generative Story

� For each mention encountered in a document,
� generate a cluster id for the mention (according to some 

cluster id distribution) 
� generate the head noun of the mention (according to some 

cluster-specific head distribution)

� Inference: Gibbs sampling

� Problem with the model: Too simplistic!
� mentions with the same head likely to get the same cluster id

� two occurrences of “she” will likely be posited as coreferent
� particularly inappropriate for generating pronouns
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Haghighi and Klein’s Generative Story

� For each mention encountered in a document,
� generate a cluster id for the mention (according to some 

cluster id distribution) 
� generate the head noun of the mention (according to some 

cluster-specific head distribution) 

� Inference : Gibbs sampling

� Problem with the model: Too simplistic!
� mentions with the same head likely to get the same cluster id

� Extensions:
� use a separate “pronoun head model” to generate pronouns
� incorporate salience
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Improving Haghighi and Klein’s Model

� 3 modifications
� relaxed head generation
� agreement constraints
� pronoun-only salience
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Modification 1: Relaxed Head Generation

� Motivation
� H&K’s model is linguistically impoverished

� does not exploit useful knowledge: alias, appositives, …
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Modification 1: Relaxed Head Generation

� Motivation
� H&K’s model is linguistically impoverished

� does not exploit useful knowledge: alias, appositives, …

� Goal
� simple method for incorporating such knowledge sources
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Modification 1: Relaxed Head Generation

� pre-process a document by assigning  a “head id” to each 
mention, such that two mentions have the same head id iff
� they are the same string
� or they are aliases
� or they are in an appositive relation
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Modification 1: Relaxed Head Generation

� pre-process a document by assigning  a “head id” to each 
mention, such that two mentions have the same head id iff
� they are the same string
� or they are aliases
� or they are in an appositive relation

� instead of generating the head noun,                            
generate the head id
� the model views “International Business Corporation” and 

“IBM” as two mentions having the same head
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1
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Modification 1: Relaxed Head Generation

� pre-process a document by assigning  a “head id” to each 
mention, such that two mentions have the same head id iff
� they are the same string
� or they are aliases
� or they are in an appositive relation

� instead of generating the head noun,                            
generate the head id
� the model views “International Business Corporation” and 

“IBM” as two mentions having the same head
� encourages the model to put the two into the same cluster

International   
Business 

Corporation

IBM

Charniak

…

1

1

2

…
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Modification 2: Agreement Constraints

� Motivation
� gender and number agreement is implemented as a 

preference, not as a constraint, in H&K’s model
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Modification 2: Agreement Constraints

� Motivation
� gender and number agreement is implemented as a 

preference, not as a constraint, in H&K’s model

� while the model favors the assignment of a pronoun to a 
gender- and number-compatible cluster

� it also favors the assignment of a pronoun to a large cluster

� if a cluster is large enough, the model may assign the 
pronoun to the cluster even if the two are not compatible

� Goal
� implement gender and number agreement as a constraint
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� disallow the generation of a mention by any cluster where 
the two are incompatible in number or gender

Modification 2: Agreement Constraints
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Modification 3: Pronoun-Only Salience

� In H&K’s model, salience is applied to all types of mentions 
(pronouns, names and nominals) during cluster assignment

� Our hypothesis
� since names and nominals are less sensitive to salience, the 

net benefit of applying salience to names and nominals could 
be negative as a result of inaccurate modeling of salience

� We restrict the application of salience to pronouns only
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Improving Haghighi and Klein’s Model

� 3 modifications
� relaxed head generation
� agreement constraints
� pronoun-only salience
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Evaluation

� EM-based model

� Haghighi and Klein’s model
� with and without the 3 modifications
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� The ACE 2003 coreference corpus
� 3 data sets (Broadcast News, Newswire, Newspaper)
� each has a training set and a test set; evaluate on test set only

Experimental Setup
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� The ACE 2003 coreference corpus
� 3 data sets (Broadcast News, Newswire, Newspaper)
� each has a training set and a test set; evaluate on test set only

� Mentions
� system mentions (mentions extracted by an NP chunker)
� perfect mentions (mentions extracted from answer key)

� Scoring programs: recall, precision, F-measure
� MUC scoring program (Vilain et al., 1995)

� under-penalizes partitions where mentions are over-clustered
� does not reward successful identification of singleton clusters

Experimental Setup
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� The ACE 2003 coreference corpus
� 3 data sets (Broadcast News, Newswire, Newspaper)
� each has a training set and a test set; evaluate on test set only

� Mentions
� system mentions (mentions extracted by an NP chunker)
� perfect mentions (mentions extracted from answer key)

� Scoring programs: recall, precision, F-measure
� MUC scoring program (Vilain et al., 1995)
� CEAF scoring program (Luo, 2005)

� addresses both weaknesses of the MUC scoring program

Experimental Setup
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� The ACE 2003 coreference corpus
� 3 data sets (Broadcast News, Newswire, Newspaper)
� each has a training set and a test set; evaluate on test set only

� Mentions
� system mentions (mentions extracted by an NP chunker)
� perfect mentions (mentions extracted from answer key)

� Scoring programs: recall, precision, F-measure
� MUC scoring program (Vilain et al., 1995)
� CEAF scoring program (Luo, 2005)
� CEAF variant

� same as CEAF, but ignores singleton clusters

Experimental Setup
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Heuristic Baseline

� Simple rule-based system 

� Posits two mentions as coreferent if and only if they are
� the same string
� aliases
� in an appositive relation
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Broadcast News Newswire 
Experiments on System Mentions 

R P F R P F 

Heuristic Baseline 30.9 44.3 36.4 36.3 53.4 43.2 

Degenerate EM Baseline 70.8 36.3 48.0 69.0 25.1 36.8 

Our EM-based Model 42.4 66.0 51.6 55.2 60.6 57.8 

Haghighi and Klein Baseline 50.8 40.7 45.2 43.0 40.9 41.9 

   + Relaxed Head Generation 48.3 45.7 47.0 40.9 50.0 45.0 

   + Agreement Constraints 50.4 47.5 48.9 41.7 51.2 46.0 

   + Pronoun-only Salience 52.2 53.0 52.6 44.3 57.3 50.0 

Fully Supervised Model 53.0 70.3 60.4 53.1 70.5 60.6 
 

 

Heuristic Baseline: MUC Results
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EM-Based Model

� Initialize the parameters using one (labeled) document
� rather than using randomly guessed clusterings
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EM-Based Model: MUC Results
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EM-Based Model: MUC Results

� gains in both recall and precision
� F-measure increases by 15%
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Duplicated Haghighi and Klein’s Model

� The version that incorporates both salience and the separate 
model for generating pronouns

� Use the same labeled document as in the EM-based model 
to learn one of the concentration parameters, α
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Duplicated H&K’s Model: MUC Results
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Duplicated H&K’s Model: MUC Results

� In comparison to EM-based model
� precision drops substantially
� F-measure decreases by 6-16%
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Adding 3 Modifications: MUC Results
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Adding 3 Modifications: MUC Results

� In comparison to Duplicated Haghighi and Klein
� F-measure improves after the addition of each modification
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Adding 3 Modifications: MUC Results

� In comparison to Duplicated Haghighi and Klein
� F-measure improves after the addition of each modification
� modest gain in recall and substantial gain in precision when 

all modifications are applied (7-9% gain in F-measure)



110

Broadcast News Newswire 
Experiments on System Mentions 

R P F R P F 

Heuristic Baseline 30.9 44.3 36.4 36.3 53.4 43.2 

Our EM-based Model 42.4 66.0 51.6 55.2 60.6 57.8 

Duplicated Haghighi and Klein 50.8 40.7 45.2 43.0 40.9 41.9 

   + Relaxed Head Generation 48.3 45.7 47.0 40.9 50.0 45.0 

   + Agreement Constraints 50.4 47.5 48.9 41.7 51.2 46.0 

   + Pronoun-only Salience 52.2 53.0 52.6 44.3 57.3 50.0 

Fully Supervised Model 53.0 70.3 60.4 53.1 70.5 60.6 
 

 

Supervised Resolver: MUC Results

� Trained using C4.5, entire ACE training set, 34 features
� Outperforms the unsupervised models by 3-8%
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MUC, CEAF, CEAF-Variant F-Scores
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Fully Supervised Model 60.4 61.8 59.9 60.6 64.5 60.6 
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MUC, CEAF, CEAF-Variant F-Scores

� Similar performance trends across the 3 scoring programs
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Experiments using Perfect Mentions

� Similar performance trends observed
� except that the unsupervised models perform comparably   

to the fully-supervised resolver

� Conclusions drawn from system mentions are not always 
generalizable to perfect mentions and vice versa
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Summary

� Presented an EM-based model for unsupervised 
coreference resolution that 
� outperforms Haghighi and Klein’s coreference model

� compares favorably to a modified version of their model


