Modeling Organization in Student Essays

Isaac Persing, Alan Davis, and Vincent Ng Human Language Technology Research Institute University of Texas at Dallas

> EMNLP 2010 – Boston, MA October 9, 2010

Automated Essay Scoring

- Important educational application of NLP
- Recent academic research
 - Technical errors
 - Coherence
 - Relevance to prompt
 Little work done on modeling *organization*

What Is Organization?

- Structure of an essay's argument
 - Writers must: introduce topic, state their position, give support, conclude argument
 - Transitions between *functions* of discourse structures
- Related work on organization
 - E-rater, v.2 (Attali and Burstein, 2004; 2006)
 - Counts number of discourse segments present:
 - 1 thesis, 3 main ideas, 3 supporting ideas, 1 conclusion

Contributions

- New computational model of organization
- New corpus annotated with organization scores

Overview

Corpus and Annotations

- Labeling Discourse Structures
- Organization Scoring Methods
 - Heuristic-Based Methods
 - Learning-Based Methods
- Experimental Results

Selecting a Corpus

- International Corpus of Learner English (ICLE)
 - 4.5 million words in more than 6000 essays
 - Written by university undergraduates who are learners of English as a foreign language
 - Mostly (91%) argumentative writing topics
 - Contain the discourse structures we want to model
- Essays selected for annotation
 - 1003 argumentative, untimed essays

Scoring Rubric

- 4 essay is **very well structured** and is organized in a way that logically develops an argument
- 3 essay is **fairly well structured** but could somewhat benefit from reorganization
- 2 essay is **poorly structured** and would greatly benefit from reorganization
- 1 essay is completely unstructured and requires major reorganization
- Half-point increments (i.e., 1.5, 2.5, 3.5) allowed

Annotator Training and Selection

- 30 applicants familiarized with scoring rubric and given sample essays to annotate
- Discussed essay scores with coordinator and other annotators until consensus reached on best scores
- Selected 6 applicants with highest consistency on 8 sample essays

Inter-Annotator Agreement

- Subset of 846 essays scored by 2 annotators
- Compare scores between pairs of annotators to calculate inter-annotator agreement
- Perfect agreement on only 29% of essays
- Scores within 0.5 point on 71% of essays
- Scores within 1.0 point on 93% of essays

Overview

Corpus and Annotations
Labeling Discourse Structures

- Organization Scoring Methods
 - Heuristic-Based Methods
 - Learning-Based Methods
- Experimental Results

Functions of Discourse Structures

- Organization refers to an argument's structure
- Essential elements of an argument:
 - Introduce topic, state position, give support, conclude
- If these elements are missing or out of order, then organization is poor
 - Knowing the *functions* of discourse structures is helpful to score an essay's organization

Paragraph Function Labels

- Identify discourse function of paragraphs
- 4 paragraph function labels:
 - Introduction
 - Body
 - Conclusion
 - Rebuttal

Paragraph Function Labeling

- Label paragraphs heuristically
- Features used to label a paragraph's function:
 - Position of paragraph within essay
 - e.g., First paragraph is likely an Introduction
 - Types of sentences within paragraph
 - e.g., Support sentence Body paragraph
 Requires that we label sentences as well

Sentence Function Labels

- Identify discourse function of sentences
- 10 sentence function labels:
 - Prompt
 - Transition
 - Thesis
 - Main Idea
 - Elaboration

- Support
- Conclusion
- Rebuttal
- Solution
- Suggestion

Sentence Function Labeling

- Label sentences heuristically
- Features used to label a sentence's function:
 - Position of sentence within paragraph
 - e.g., Last sentence is likely a conclusion
 - Words (unigrams) and punctuation
 - e.g., "agree" | "think" | "opinion" Thesis

Overview

Corpus and Annotations
Labeling Discourse Structures
Organization Scoring Methods

- Heuristic-Based Methods
- Learning-Based Methods
- Experimental Results

Heuristic-Based Organization Scoring

- Two heuristic methods to score organization
- Both methods use nearest neighbor approach:
 - 1) Find *k* essays most similar to test essay *e*
 - 2) Predict e's organization score by aggregating the scores of its k nearest neighbors found in step 1
- These methods differ by:

How do we find similar essays?

How do we aggregate scores?

Method 1: Finding Similar Essays

- Essays have labeled paragraphs (e.g., IBBBC)
- Organization depends on transitions between paragraph functions
 - Sequence of labels is what's important
- Find similar paragraph label sequences
 - e.g., IBBBC similar to IBBRC

Use sequence alignment algorithm to calculate similarity score for any pair of label sequences

Aligning Label Sequences

- Needleman-Wunsch algorithm finds an optimal alignment of a pair of sequences
- Scoring function S(a, b) is set heuristically:

```
S(a, b) = +1 when a = b (reward for match)

S(a, b) = -1 when a \neq b (penalty for mismatch)

S(a, -) = S(-, a) = -1 (penalty for indel)
```

- Aligning IBBBC with IBBRC scores +3 (similar)
- Aligning IBBBC with CRRRI scores –5 (dissimilar)

Method 1: Scoring Organization

- 1) Find *k* essays most similar to test essay *e*
 - Calculate similarity score between essay e and each essay in the training set by aligning their sequences of paragraph labels
- 2) Predict test essay e's organization score by aggregating its k nearest neighbors' scores
 - 3 ways to aggregate scores (mean, median, mode)
 - H_p has 3 variations

Method 2: Finding Similar Paragraphs

- Paragraphs have labeled sentences
- Organization also depends on transitions between sentence functions
- Find similar paragraphs by aligning sentence label sequences
- Associate each similar paragraph with its essay's organization score

Method 2: Scoring Organization

- 1) For each paragraph p_i of test essay e:
 - a) Find k paragraphs most similar to p_i
 - Calculate similarity score between paragraph p_i and each paragraph in the training set by aligning their sequences of sentence labels
 - b) Score p_i by aggregating k nearest neighbors' scores
 - 3 ways to aggregate scores (mean, median, mode)
- 2) Predict e's organization score by aggregating its paragraphs' scores obtained in step 1b
 - 3 ways to aggregate scores (mean, median, mode)

Heuristic-Based Scoring Methods

- Total of 12 heuristic-based scoring methods:
 - -3 variants of H_p (using paragraph label sequences)
 - -9 variants of H_s (using sentence label sequences)

Which of these 12 variations is the best?

How should we combine these methods?

Learning-Based Organization Scoring

- Use learning system to decide which methods to combine to predict organization score
 - SVM^{light} implementation of regression SVMs
- Three different approaches:
 - $-R_{I}$ uses linear kernel
 - $-R_s$ uses string kernel
 - $-R_a$ uses alignment kernel

Regression with Linear Kernel

- R₁ incorporates three types of features:
 - Nearest neighbor score predictions from H_p and H_s
 - Paragraph-label subsequences of length 1 to 5
 - Give learner more direct access to paragraph labels
 - Sentence-label subsequences of length 1 to 5
 - Organization depends on order of sentence functions

Regression with String Kernel

- SVMs enable the use of structured features (e.g., sequences) rather than only flat features (i.e., discrete- or real-valued)
- R_s uses *string kernel* to efficiently compute similarity between paragraph label sequences based on common subsequences of length 3

Regression with Alignment Kernel

- Kernels compute similarity between examples
 Sequence alignment algorithm does this too!
 - Use alignment scores as kernel values
 - $-R_a$ uses alignment kernel to compute similarity
- Kernel must always return non-negative value
 - Increase each score by the lower bound to ensure all are non-negative

Regression with Composite Kernel

- We want a learner to use multiple kernels
- Use composite kernel:

$$K_c(F_1, F_2) = \frac{1}{n} \sum_{i=1}^n K_i(F_1, F_2)$$

where F_1 and F_2 are two essays' features

Overview

Corpus and Annotations
Labeling Discourse Structures
Organization Scoring Methods
Heuristic-Based Methods
Learning-Based Methods
Experimental Results

Evaluation Metrics

Define 3 evaluation metrics:

$$S_1 = \frac{1}{N} \sum_{A_i \neq E_i} 1$$
 (frequency of error)

$$S_2 = \frac{1}{N} \sum_{i=1}^{N} |A_i - E_i|$$
 (mean error distance)

$$S_3 = \frac{1}{N} \sum_{i=1}^{N} (A_i - E_i)^2$$
 (mean squared error)

 A_i and E_i are annotated and estimated scores

Baseline Scoring System

- No standard baseline for scoring organization
- Avg assigns the average organization score of essays in training set
 - Any score prediction system using information in the essay should be able to beat this
- Simple, but not easy to beat
 - 41% of essays have score of 3
 - 96% of essays have score within 1 point of 3

Heuristic-Based Scoring Systems

System	S ₁	S ₂	<i>S</i> ₃
Avg	.585	.412	.348
H_{ρ}	.548	.339	.198
H_s	.575	.397	.329

- Both H_p and H_s outperform Avg baseline
- H_p performs significantly (p < 0.01) better than both Avg and H_s systems under S_2 and S_3

Examining the transition of paragraph functions is more important than with sentence functions

System	S ₁	S ₂	S ₃
Avg	.585	.412	.348
H_{ρ}	.548	.339	.198
H_s	.575	.397	.329
R_I	.520	.331	.186

- R_l performs better than Avg, H_p and H_s
- Results are not significant, even at p < 0.1
 - Only major benefit of R_l is that it combines all 12 heuristic methods, so we don't have to choose one
 - $-H_p$ is a fairly effective heuristic scoring method

System	S ₁	S ₂	<i>S</i> ₃
Avg	.585	.412	.348
H_{p}	.548	.339	.198
H_s	.575	.397	.329
R_I	.520	.331	.186
R_s	.577	.369	.222

- R_s performs better than Avg and H_s (S_2 and S_3)
 - Extracts useful information from paragraph labels
- R_s performs significantly worse than H_p and R_l
 - Nearest neighbor features are very valuable

System	S ₁	S ₂	<i>S</i> ₃
Avg	.585	.412	.348
$H_{ ho}$.548	.339	.198
H_s	.575	.397	.329
R_I	.520	.331	.186
R_s	.577	.369	.222
R_a	.686	.519	.429

- R_a performs significantly (p < 0.01) worse than R_s
 - Alignment kernel appears to not be extracting any useful information from paragraph label

System	S ₁	S ₂	S ₃	
Avg	.585	.412	.348	
H_{p}	.548	.339	.198	
H_s	.575	.397	.329	
R_I	.520	.331	.186	
R_s	.577	.369	.222	
R_{a}	.686	.519	.429	d

- R₁ performs best among learning-based methods
- R_I and H_p are statistically indistinguishable
- R_a performs significantly worse than R_s and R_I

Composite Kernel Scoring Systems

System	S ₁	S ₂	<i>S</i> ₃
Avg	.585	.412	.348
$H_{ ho}$.548	.339	.198
H_s	.575	.397	.329
R_I	.520	.331	.186
R_s	.577	.369	.222
R_a	.686	.519	.429
R_{ls}	.534	.332	.187
R_{la}	.541	.332	.178
R_{sa}	.517	.325	.177

• R_{sa} performs best among 2-kernel systems

Composite Kernel Scoring Systems

System	S ₁	S ₂	S ₃
Avg	.585	.412	.348
$H_{ ho}$.548	.339	.198
H_s	.575	.397	.329
R_I	.520	.331	.186
R_s	.577	.369	.222
R_a	.686	.519	.429
R_{ls}	.534	.332	.187
R_{la}	.541	.332	.178
R_{sa}	.517	.325	.177
R _{Isa}	.517	.323	.175

Feature Analysis

- R₁ uses three types of flat features:
 - Nearest neighbor score predictions from H_p and H_s
 - Paragraph-label subsequences of length 1 to 5
 - Sentence-label subsequences of length 1 to 5
- Feature ablation remove each feature group independently and find drop in performance
 - Nearest neighbor features are most important
 - Paragraph label sequences are least important

Conclusion

- New computational model of organization
 - Heuristic-based and learning-based methods
- New corpus annotated with organization scores
 - Release corpus to research community