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Event Extraction

Event extraction is the task of extracting and labeling all
iInstances in a text document that correspond to pre-defined
event types




Event Extraction

Event extraction is the task of extracting and labeling all
iInstances in a text document that correspond to pre-defined
event types

e BioNLP Genia event extraction task concerns the extraction of
iInstances of bio-molecular event types (Kim et al., 2009)




An Example of BioNLP Events

... demonstrated that HOIL-1L interaction protein (HOIP) is
recruited to CD40 in a TRAF2-dependent manner ...

ID_|EventType ___|Trigger __|Arguments

E11 Binding recruited Theme={HOIL-1L interaction protein,
CD40}
E12 Regulation dependent Theme=E11, Cause=TRAF2
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An Example of BioNLP Events

... demonstrated that HOIL-1L interaction protein (HOIP) is
recruited to CD40 in a TRAF2-dependent manner ...

ID_|EventType ___|Trigger __|Arguments

E11 Binding recruited Theme={HOIL-1L interaction protein,
CD40}

E12 Regulation dependent  Theme=E11{Cause=TRAF2>
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An Example of BioNLP Events

... demonstrated that HOIL-1L interaction protein (HOIP) is
recruited to CD40 in a TRAF2-dependent manner ...

ID_|EventType ___|Trigger __|Arguments

E11 Binding recruited Theme={HOIL-1L interaction protein,

E12 Regulation dependent -Cause=TRAF2
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An Example of BioNLP Events

... demonstrated that HOIL-1L interaction protein (HOIP) is
recruited to CD40 in a TRAF2-dependent manner ...

ID_|EventType ___|Trigger __|Arguments

E11 Binding recruited Theme={HOIL-1L interaction protein,

E12 Regulation dependent -Cause=TRAF2

Events can be nested.
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Standard Pipeline Approach
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4

Step 1: Detect if a token is a trigger and
iIf so, assign a event/trigger type to it

Trigger
Classifier

etected triggers
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Standard Pipeline Approach

Step 1: Detect if a token is a trigger and
iIf so, assign a event/trigger type to it

Step 2: For every detected trigger,
determine all its arguments and assign a
role to each detected argument

Step 3: Combine the extracted triggers
and arguments to produce events

Steps 1 and 2 are difficult, while Step 3 1s trivial

Trigger
Classifier

etected triggers

Argument
Classifier

etected arguments

Events
Producer

Detected events
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Pipeline Approach: Pros and Cons

* Pros
e Approach is simple and straightforward

e Uses an efficient learner (e.g., SVMs) in each step, thus
enabling the use of high-dimensional features

- Features such as n-grams of context words, n-grams of
words/POS/dependency relations extracted from dependency
paths are important for event extraction
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Pipeline Approach: Pros and Cons

Pros
e Approach is simple and straightforward

e Uses an efficient learner (e.g., SVMs) in each step, thus
enabling the use of high-dimensional features
« Features such as n-grams of context words, n-grams of

words/POS/dependency relations extracted from dependency
paths are important for event extraction

Cons
e Error may propagate from one stage to the next

e Each trigger/argument is detected independently, thus failing
to capture the relationships between neighboring triggers,

neighboring arguments, etc.
23




Pipeline Approach

achieved state-of-the-art results in BioNLP Genia
event extraction despite its weaknesses

e BioNLP’13: Hakala et al.(2013)
* BioNLP’09 and BioNLP’11: Miwa et al. (2012)
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Pipeline Approach

achieved state-of-the-art results in BioNLP Genia
event extraction despite its weaknesses

e BioNLP’13: Hakala et al.(2013)
* BioNLP’09 and BioNLP’11: Miwa et al. (2012)

Can we improve further? If so, how?

Try to overcome the weaknesses of the pipeline approach
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Joint Inference

Markov Logic Networks (MLNSs)
e Riedel et al. (2009), Poon and Vanderwende (2010)

Pros
e can avoid error propagation
- by jointly detecting triggers and arguments
e can model dependencies between triggers/arguments

27




MLNs for Event Extraction

The performance of existing MLN approaches to event
extraction lags behind that of state-of-the-art pipeline
approaches
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The performance of existing MLN approaches to event
extraction lags behind that of state-of-the-art pipeline
approaches

e Because they include a highly simplified model ignoring

powerful high-dimensional features
e Modeling high-dimensional features using MLNs is difficult
e The complexity of inference is high
- E.g.: Word(w,,p-1) » Word(w,,p) * Word(w,,p+1) = Type(p, T)

A simple trigram feature requires |T|*|W|? groundings for
each position p
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MLNs for Event Extraction

The performance of existing MLN approaches to event
extraction lags behind that of state-of-the-art pipeline
approaches

e Because they include a highly simplified model ignoring

powerful high-dimensional features
e Modeling high-dimensional features using MLNs is difficult
e The complexity of inference is high
- E.g.: Word(w,,p-1) » Word(w,,p) * Word(w,,p+1) = Type(p, T)

A simple trigram feature requires |T|*|W|? groundings for
each position p

assignment of values
to variables
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Goal

Combine the strengths of the pipeline approach and MLNs
for event extraction

34




Goal

for event extraction

Combine the strengths of the pipefne approach and MLNs

can handle high-
dimensional
features
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Goal

Combine the strengths of the pipeline approach and MLNs
for event extraction

can handle high- can capture
dimensional relational
features dependencies

Propose a model for event extraction based on MLNs
that can handle high-dimensional features

S
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BioNLP Genia Event Extraction Task

o organized in 2009, 2011 and 2013
0 2009: abstracts only
0 2011: abstracts and some full-text articles
0 2013: full-text articles only

o concerned with extracting instances of 9 fine-grained event
subtypes that can be categorized into 3 main types:
- Simple event
One protein as its THEME argument
- Binding event
One or more proteins as its THEME argument
- Regulation event

One protein or event as its THEME argument and optionally

one protein or event as its CAUSE argument o




MLNSs: Preliminaries

* An MLN is a set of weighted first-order logic formulas (f, w)),
where w; is the weight associated with formula
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MLNSs: Preliminaries

An MLN is a set of weighted first-order logic formulas (f, w)),
where w; is the weight associated with formula

e A formula specifies a hard or soft constraint on predicates
A weight specifies how important it is to satisfy the constraint

- hard formula: infinite weight
Father(x,y) = Child(y,x)

- soft formula: finite weight
Mother(x,y) - Below45(x)

e A grounding of a formula is an assignment of values to the
variables in the formula

« In Mother(x,y) = Below45(x), if each of x and y has 10 values,
then the formula has 10 x 10 = 100 groundings
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MLNSs: Preliminaries

A world w is an assignment of values to all ground predicates

e Father(Bob,John)=T, Father(Bob,Ted)=F, Father(Jack,Matt)=T,
Male(Bob)=T, Male(Jesse)=F, ...
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A world w is an assignment of values to all ground predicates
e Father(Bob,John)=T, Father(Bob,Ted)=F, Father(Jack,Matt)=T,
Male(Bob)=T, Male(Jesse)=F, ...

The probability of a world w is given by:

1
Pr(w) = 7 exXp (Z u‘ix(fi-w)>

1

49




MLNSs: Preliminaries

A world w is an assignment of values to all ground predicates

e Father(Bob,John)=T, Father(Bob,Ted)=F, Father(Jack,Matt)=T,
Male(Bob)=T, Male(Jesse)=F, ...

The probability of a world w is given by:

1
Pr(w) = - exp (Z ﬂ‘i:\T(.fi-wO

the number of

groundings of f; that
evaluates to Truein @

50




MLNSs: Preliminaries

A world w is an assignment of values to all ground predicates

e Father(Bob,John)=T, Father(Bob,Ted)=F, Father(Jack,Matt)=T,
Male(Bob)=T, Male(Jesse)=F, ...

The probability of a world w is given by:

Pr(w) = _1 7 €XP ( w; N E)\

normalization the number of
constant groundings of f; that
evaluates to True in w

51




MLNSs: Preliminaries

A world w is an assignment of values to all ground predicates

e Father(Bob,John)=T, Father(Bob,Ted)=F, Father(Jack,Matt)=T,
Male(Bob)=T, Male(Jesse)=F, ...

The probability of a world w is given by:

Pr(w) = _1 7 €XP ( w; N E)\

@ is more probable  normalization the number of

if more formulas are  constant groundings of f; that

satisfied more often evaluates to True in @
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MLNSs: Preliminaries

* The key inference task over MLNs is finding the most
probable world (a.k.a. the MAP task):

arg max P(w) = arg max Z wi N (fi,w)

A
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e The Genia event extraction task
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Evaluation
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Baseline System

* Adopts the standard pipeline approach

e trigger classification followed by
argument classification

4
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Classifier

etected triggers

Argument

Classifier

‘Detected arguments
Events
Producer y
‘Detected events
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Training the Trigger Classifier

Training instance creation

e Create one training instance for each candidate trigger in
each training document

- Candidate triggers are verbs, nouns and adjectives in the text

e Class label is
« Trigger/Event type if the candidate trigger is a true trigger
- None otherwise
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Training instance creation

e Create one training instance for each candidate trigger in
each training document

- Candidate triggers are verbs, nouns and adjectives in the text

e Class label is
« Trigger/Event type if the candidate trigger is a true trigger
- None otherwise

Learning algorithm
e SVM-multiclass




Training the Trigger Classifier

Features computed on a candidate trigger t

Token features

The lexical string, lemma, stem, POS of t and its
surrounding tokens in a window of 2;

word n-grams (n=1,2,3) of t and its context words;

whether t contains an uppercase letter or a symbol;

Dependency
features

Compute features based on the shortest dependency
path p from t to the nearest protein:

vertex walk in p; edge walk 1n p;

n-grams (n-2,3,4) of the stemmed words associated
with p’s vertices;

n-grams (n=2,3,4) of the POS tags of the words
associated with p’s vertices;
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Training the Trigger Classifier

Features computed on a candidate trigger t

Token features

Dependency
features

The lexical string, lemma, stem, POS of t and its
surrounding tokens in a window of 2;

word n-grams (n=1,2,3) of t and its context words;

whether t contains an uppercase letter or a symbol;

Over 3 million features

Compute features based on the shortest dependency
path p from t to the nearest protein:

vertex walk in p; edge walk 1n p;

n-grams (n-2,3,4) of the stemmed words associated
with p’s vertices;

n-grams (n=2,3,4) of the POS tags of the words
associated with p’s vertices;
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* Adopts the standard pipeline approach

e trigger classification followed by
argument classification

4

Trigger

Classifier
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Argument
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Producer

‘Detected events
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Training the Argument Classifier

Training instance creation

e Create one training instance by pairing a candidate trigger t
with one of its candidate arguments

- A candidate argument is either a protein or a candidate argument
that appears in the same sentence as candidate trigger ¢

e Class label is
- Argument role if the candidate argument is a true argument of ¢
- None otherwise
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Learning algorithm
e SVM-multiclass




Training the Argument Classifier

Features computed on candidate trigger t and candidate argument a

Token features Word n-grams (n=1,2,3) of t and its surrounding text;
Word n-grams (n=1,2,3) of a and its surrounding context;

The lexical string, lemma, stem, POS of t and its
surrounding tokens in a window of 2; ...

Dependency Compute features based on the shortest dependency path
features p from t to a:

n-grams (n-2,3,4) of the stemmed words, POS tags, and
dependency types associated with p’s vertices; ...

Other features Distance between t and a;
Number of proteins between t and a;

Concatenation of t and a;

Concatenation of t’s event type and a
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Dependency Compute features based on the shortest dependency path
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Concatenation of t’s event type and a
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Our MLN Approach to Event Extraction

Goal: design a model for event extraction that combines the
strengths of SVMs and MLNs

e can employ high-dimensional features
e can model the dependencies between different data instances
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dimensional features as in the Baseline

4

Trigger Argument
Classifier Classifier

Markov Logic
Network

Step 2: Design an MLN whose formulas
encode the soft and hard constraints on
the predicates
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Step 3: Encode SVM output as prior
knowledge in the MLNs

71




Our Approach: An Overview

Step 1: Learn the SVM trigger and ‘

argument classifiers using high- ,

dimensional features as in the Baseline Trigger Argument
| Classifier Classifier

Markov Logic

4

Step 2: Design an MLN whose formulas
encode the soft and hard constraints on
the predicates

Network

Step 3: Encode SVM output as prior Events
knowledge in the MLNs Producer

¥

Detected Events

72




Our Approach: An Overview

Step 1: Learn the SVM trigger and ‘

argument classifiers using high- ,

dimensional features as in the Baseline Trigger Argument
' Classifier Classifier

Markov Logic

4

Step 2: Design an MLN whose formulas
encode the soft and hard constraints on
the predicates

Network

Step 3: Encode SVM output as prior Events
knowledge in the MLNs Producer

¥

Detected Events

73




BioMLN: 3 kinds of Predicates

* Query predicates: assignments not known & need to be predicted

TriggerType(sid.tid.ttype!)
ArgumentRole(sid.aid.tid.arole!)

74




BioMLN: 3 kinds of Predicates

Query predicates: assignments not known & need to be predicted

TriggerType(sid.tid.ttype!)
ArgumgntRole(sid.aid.tid.arole!)

The token located in
sentence sid at position tid
has trigger type ttype

)




BioMLN: 3 kinds of Predicates

Query predicates: assignments not known & need to be predicted

TriggerType(sid.tid.ttype!)
ArgumgntRole(sid.aid.tid.arole!)

The token located in The token in sentence sid at

sentence sid at position tid position aid plays the argument

has trigger type ttype role arole w.r.t. the token at
position tid




BioMLN: 3 kinds of Predicates

Q di : : « means that exactly one
uery predaicates: assignments not known ttype makes the predicate

TriggerType(sid.tid.ttypd true for each combination
ArgumgntRole(sid.aid.tid.arole!) of sid and tid

The token located in The token in sentence sid at

sentence sid at position tid position aid plays the argument

has trigger type ttype role arole w.r.t. the token at
position tid
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BioMLN: 3 kinds of Predicates

Query predicates: assignments not known & need to be predicted

TriggerType(sid.tid.ttype!)
ArgumentRole(sid.aid.tid.arole!)

Hidden predicates: model latent random processes
imple(sid.tid)
Regulatjion(sid.tid)

The token in sentence sid The token in sentence sid
at position tid corresponds at position tid corresponds
to a Simple or Binding to a Regulation event
event trigger trigger
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TriggerType(sid.tid.ttype!)
ArgumentRole(sid.aid.tid.arole!)

Hidden predicates: model latent random processes
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BioMLN: 3 kinds of Predicates

Query predicates: assignments not known & need to be predicted

TriggerType(sid.tid.ttype!)
ArgumentRole(sid.aid.tid.arole!)

Hidden predicates: model latent random processes
Simple(sid.tid)
Regulation(sid.tid)

Evidence predicates: assumed to be known during inference
ord(sid.tid.word)
DepType(sid.aid.tid.dtype)

The word in sentence sid at

position tid is equal to word
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BioMLN: 3 kinds of Predicates

Query predicates: assignments not known & need to be predicted
TriggerType(sid.tid.ttype!)
ArgumentRole(sid.aid.tid.arole!)

Hidden predicates: model latent random processes

Simple(sid.tid)
Regulation(sid.tid)
Evidence predicates: assumed to be known during inference

ord(sid.tid.word)
DepType{sid.aid.tid‘dfygel

dtype is the dependency type in the
The word in sentence sid at dependency parse tree that connects
position tid is equal to word the token at position tid to the token
at position aid in sentence sid




BioMLN: 9 Formulas

)

. dt TriggexrTypel(i.j.t).
. Ja ArgumentRole(i.k.j.a).

. =TriggerType(i.j.None) = 3k BrgumentRole(i.k.7.T heme).

Simple(i.j) = — 3k ArgumentRole(i.k.j.Cause).

. TriggerType(i.j.None) & ArgumentRole(i.k.j.None).

—ArgumentRole(i.k.j.None) A =TriggerType(i.k.N one) = Regulation(i.j).

. Simple(i.j) < TriggerType(i.j.Simplel) V...V TriggerType(i.j.Binding).

. Regulation(i.j) & TriggerType(i.j.Reg) V TriggerType(i.j.PosReq)

vV TriggerTypel(i.j.NegReq).

Word(i.j.tw) A TriggerType(i.j.+t) A DepType(i.k.j.+d) A ArgumentRole(i.k.j.ta)

84




BioMLN: 9 Formulas

)

. |3t TriggexrType(i.j.t).

. |3a ArgumentRole(i.k.j.a).

. =TriggerType(i.j.None) = 3k BrgumentRole(i.k.7.T heme).

Simple(i.j) = — 3k ArgumentRole(i.k.j.Cause).

. TriggerType(i.j.None) & ArgumentRole(i.k.j.None).

Each candidate
trigger/argument
has a type/role

—ArgumentRole(i.k.j.None) A =TriggerType(i.k.N one) = Regulation(i.j).

vV TriggerTypel(i.j.NegReq).

. Simple(i.j) < TriggerType(i.j.Simplel) V...V TriggerType(i.j.Binding).

. Regulation(i.j) & TriggerType(i.j.Reg) V TriggerType(i.j.PosReq)

Word(i.j.tw) A TriggerType(i.j.+t) A DepType(i.k.j.+d) A ArgumentRole(i.k.j.ta)
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BioMLN: 9 Formulas

1. 3t TriggerType(i.j.t).

)

. Ja ArgumentRole(i.k.j.a).

3. =TriggerType(i.j.None) = 3k ArgumentRole(i.k.7.T heme).

4. Simple(i.j) = — Ik ArgumentRole(i.k.j.Cause). Hidden predicates
are clusters of

5. TriggerType(i.j.None) & ArgumentRole(i.k.j.None). trigger types

6. —ArgumentRole(i.k.j.None) N =TriggerType(i.k.None) = Regulation(i.j).

| Simple(i.j) < TriggerTypel(i.j.Simplel) V...V TriggerType(i.j.Binding).

8( Regulation(i.j) & TriggerType(i.j.Req) V TriggerType(i.j.PosReq)
|V TriggerType(i.j.NegReg).

9. Word(7,j.7w) A TriggerType(i.j.+t) A DepType(i.k.j.+d) N ArgumentRole(i.k.j.+a)
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BioMLN: 9 Formulas

)

. Ja ArgumentRole(i.k.j.a).

. 3t TriggerType(i.j.t). Capture

dependencies
between triggers

.|-TriggerType(i.j.None) = 3k BrgumentRole(i.k.7.T heme).

and arguments

Simple(i.j) = — 3k ArgumentRole(i.k.j.Cause).

. |TriggerType(i.j.None) & ArgumentRole(i.k.j.None).

—ArgumentRole(i.k.j.None) A =TriggerType(i.k.N one) = Regulation(i.j).

. Simple(i.j) < TriggerType(i.j.Simplel) V...V TriggerType(i.j.Binding).

. Regulation(i.j) & TriggerType(i.j.Reg) V TriggerType(i.j.PosReq)

vV TriggerTypel(i.j.NegReq).

Word(i.j.tw) A TriggerType(i.j.+t) A DepType(i.k.j.+d) A ArgumentRole(i.k.j.ta)
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BioMLN: 9 Formulas

)

. Ja ArgumentRole(i.k.j.a).

. 3t TriggerType(i.j.t). Capture

dependencies
between triggers

.|-TriggerType(i.j.None) = 3k BrgumentRole(i.k.7.T heme).

and arguments

Simple(i.j) = — 3k ArgumentRole(i.k.j.Cause).

. |TriggerType(i.j.None) & ArgumentRole(i.k.j.None).

—ArgumentRole(i.k.j.None) A =TriggerType(i.k.N one) = Regulation(i.j).

. Simple(i.j) < TriggerType(i.j.Simplel) V...V TriggerType(i.j.Binding).

. Regulation(i.j) & TriggerType(i.j.Reg) V TriggerType(i.j.PosReq)

vV TriggerTypel(i.j.NegReq).

Word(i.j.tw) A TriggerType(i.j.+t) A DepType(i.k.j.+d) A ArgumentRole(i.k.j.ta)
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MLN Structure — Joint Formulas

. 3t TriggerType(z.j.0). Hard constraints:

2. Ja ArgumentRole(i.k.7.a). nfinite weights

3. =TriggerType(i.j.None) = 3k ArgumentRole(i.k.7.T heme).

4. Simple(i.j) = — Ik ArgumentRole(i.k.j.Cause).

5. TriggerType(i.j.None) & ArgumentRole(i.k.j.None).

6. —ArgumentRole(i.k.j.None) N =TriggerType(i.k.None) = Regulation(i.j).
. Simple(i.j) < TriggerType(i.j.Simplel) V...V TriggerType(i.j.Binding).

. Regulation(i.j) & TriggerType(i.j.Reg) V TriggerType(i.j.PosReq)
vV TriggerTypel(i.j.NegReq).

9. Word(7,j.7w) A TriggerType(i.j.+t) A DepType(i.k.j.+d) N ArgumentRole(i.k.j.+a)
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MLN Structure — Joint Formulas

)

. dt TriggexrTypel(i.j.t).
. Ja ArgumentRole(i.k.j.a).

. =TriggerType(i.j.None) = 3k BrgumentRole(i.k.7.T heme).

Simple(i.j) = — 3k ArgumentRole(i.k.j.Cause).

. TriggerType(i.j.None) & ArgumentRole(i.k.j.None).

—ArgumentRole(i.k.j.None) A =TriggerType(i.k.N one) = Regulation(i.j).

. Simple(i.j) < TriggerType(i.j.Simplel) V...V TriggerType(i.j.Binding).

. Regulation(i.j) & TriggerType(i.j.Reg) V TriggerType(i.j.PosReq)

vV TriggerTypel(i.j.NegReq).

Word(i.j.tw) A TriggerType(i.j.+t) A DepType(i.k.j.+d) A ArgumentRole(i.k.j.ta)

Encode how a word w with trigger
type tis related to the role a of its
argument via dependency type d o2




MLN Structure — Joint Formulas

)

. dt TriggexrTypel(i.j.t).
. Ja ArgumentRole(i.k.j.a).

. =TriggerType(i.j.None) = 3k BrgumentRole(i.k.7.T heme).

Simple(i.j) = — 3k ArgumentRole(i.k.j.Cause).

. TriggerType(i.j.None) & ArgumentRole(i.k.j.None).

—ArgumentRole(i.k.j.None) A =TriggerType(i.k.N one) = Regulation(i.j).

. Simple(i.j) < TriggerType(i.j.Simplel) V...V TriggerType(i.j.Binding).

. Regulation(i.j) & TriggerType(i.j.Reg) V TriggerType(i.j.PosReq)

vV TriggerTypel(i.j.NegReq).

Word(i.j.tw) A TriggerType(i.j.+t) A DepType(i.k.j.+d) A ArgumentRole(i.k.j.ta)

Encode how a word w with trigger Soft constraints:
type tis related to the role a of its weights need to
argument via dependency type d be learned o1




Weight Learning for Soft Formulas

Could use gradient descent to maximize the conditional log-

likelihood of the query and the hidden variables given an
assignment to the evidence variables

. 1 . . .
-c.t.-';-+ — -u.-‘j— — a(Ew(n;) —ny)
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Weight Learning for Soft Formulas

Could use gradient descent to maximize the conditional log-
likelihood of the query and the hidden variables given an
assignment to the evidence variables

1 .
-u-';."' — -u-‘j— — a(Ey (1) @

number of groundings
in which the j-th
formula is satisfied in
the training data
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Weight Learning for Soft Formulas

Could use gradient descent to maximize the conditional log-
likelihood of the query and the hidden variables given an
assignment to the evidence variables

expected number of number of groundings
groundings in which in which the j-th

the J-th formula is formula is satisfied in
satisfied given the the training data

current weight vector
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Weight Learning for Soft Formulas

Could use gradient descent to maximize the conditional log-

likelihood of the query and the hidden variables given an
assignment to the evidence variables

Computing the number of groundings
expectation requires in which the j-th
performing inference formula is satisfied in
over the MLN and is the training data
intractable
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Weight Learning for Soft Formulas

Could use gradient descent to maximize the conditional log-

likelihood of the query and the hidden variables given an
assignment to the evidence variables

141 o @

o . w
Computing the number of groundings
expectation requires in which the j-th
performing inference formula is satisfied in
over the MLN and is the training data
intractable

Use the voted perceptron algorithm:
Approximate the number of satisfied groundings in the MAP assignment




Weight Learning for Soft Formulas

Could use gradient descent to maximize the conditional log-

likelihood of the query and the hidden variables given an
assignment to the evidence variables

141 o @

o . w
Computing the number of groundings
expectation requires in which the j-th
performing inference formula is satisfied in
over the MLN and is the training data
intractable

Use the voted perceptron algorithm:
Approximate the number of satisfied groundings in the MAP assignment
Easier to compute the MAP assignment than the expectation

)7




Our Approach: An Overview

Step 1: Learn the SVM trigger and
argument classifiers using high-
dimensional features as in the Baseline

Step 2: Design an MLN whose formulas
encode the soft and hard constraints on
the predicates

Step 3: Encode SVM output as prior
knowledge in the MLNs

Trigger Argument
Classifier Classifier

Markov Logic
Network

Events

Producer

¥

Detected Events
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Using the SVM Output as Priors for the MLN

* Two soft clauses are added into the MLN:
TriggerType(i,+j,+t) ArgumentRole(i,+k,+j,+a)

‘+’means a separate
weight is to be learned
for each unique
combination of j and t
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Using the SVM Output as Priors for the MLN

Two soft clauses are added into the MLN:
TriggerType(i,+j,+t) ArgumentRole(i,+k,+j,+a)

The SVM trigger
classifier provides
confidence regarding
how likely the word at
position jin sentence i
has trigger type t
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Using the SVM Output as Priors for the MLN

Two soft clauses are added into the MLN:
TriggerType(i+j,+t) ArgumentRole(i,+k,+7j,+a)

=

The SVM trigger The SVM argument classifier
classifier provides provides confidence
confidence regarding regarding how likely the word
how likely the word at at position k in sentence i has
position jin sentence i argument role a w.r.t. the

has trigger type t token at position j
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Using the SVM Output as Priors for the MLN

Two soft clauses are added into the MLN:
TriggerType(i+j,+t) ArgumentRole(i,+k,+7j,+a)

=

The SVM trigger The SVM argument classifier
classifier provides provides confidence
confidence regarding regarding how likely the word
how likely the word at at position k in sentence i has
position jin sentence i argument role a w.r.t. the

has trigger type t token at position j

Use these confidence values as the weights of these soft formulas
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Using the SVM Output as Priors for the MLN

Two soft clauses are added into the MLN:
TriggerType(i+j,+t) ArgumentRole(i,+k,+7j,+a)

The SVM trigger The SVM argument classifier
classifier provides provides confidence
confidence regarding regarding how likely the word
how likely the word at at position k in sentence i has
position jin sentence i argument role a w.r.t. the

has trigger type t token at position j

Use these confidence values as the weights of these soft formulas
e Provide prior knowledge for the MLN
- High-dimensional features implicitly used by the MLN

e In practice, we need to scale these confidence values 103




Our Approach: An Overview

Step 1: Learn the SVM trigger and
argument classifiers using high-
dimensional features as in the Baseline

Step 2: Design an MLN whose formulas
encode the soft and hard constraints on
the predicates

Step 3: Encode SVM output as prior
knowledge in the MLNs

Classifier

4

Argument
Classifier

Markov Logic

Network

Events

Producer

¥

Detected Events
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What’s next?
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What’s next?

Perform MAP inference
e Needed not only in testing but also in training (weight learning)
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What’s next?

Perform MAP inference
e Needed not only in testing but also in training (weight learning)

How?
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Naive MAP Inference

Ground the whole MLN and then reduce it by removing
formulas that are inconsistent with the evidence

Compute the MAP solution using standard solvers
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Naive MAP Inference

Ground the whole MLN and then reduce it by removing
formulas that are inconsistent with the evidence

Compute the MAP solution using standard solvers

But.. this naive approach is infeasible because of the huge
size of the network:

e Assuming 1000 sentences and 10 tokens per sentence,
100K groundings will be generated for one formula:

—TriggerType(i,j.None) = dk ArgumentRole(i.k,j. T heme).
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Efficient MAP Inference

* |ldea

e Decompose the network into several disconnected components
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Efficient MAP Inference

Idea

e Decompose the network into several disconnected components

Observation
» All our predicates are sentence-dependent
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Efficient MAP Inference

Idea
e Decompose the network into several disconnected components

Observation
e All our predicates are sentence-dependent, so

- the MAP assignment to the MLN over all sentences is the
same as the union of the MAP assignments to the MLN over
each sentence
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Efficient MAP Inference

Idea
e Decompose the network into several disconnected components

Observation
e All our predicates are sentence-dependent, so

- the MAP assignment to the MLN over all sentences is the
same as the union of the MAP assignments to the MLN over
each sentence

- The MAP computation is decomposable
can perform MAP inference for each sentence independently
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Efficient MAP Inference

Idea
e Decompose the network into several disconnected components

Observation
e All our predicates are sentence-dependent, so

- the MAP assignment to the MLN over all sentences is the
same as the union of the MAP assignments to the MLN over
each sentence

- The MAP computation is decomposable
can perform MAP inference for each sentence independently

So.. we can create one MLN per sentence

 keep only one sentence’s grounding in memory -




Plan for the Talk

Preliminaries
e The Genia event extraction task
e Markov Logic Networks

Baseline system
Our MLN approach
Evaluation
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Evaluation: Goal

Evaluate our MLN approach to event extraction

16




Evaluation: Datasets and Statistics

Dataset #Papers #Abstracts #Trigger types #Events
BioNLP’13 | (10,10,14) (0,0,0) 13 (2817,3199,3348)
BioNLP’11 (5,5,4) (800,150,260) 9 (10310,4690,5301)
BioNLP’09 (0,0,0) (800,150,260) 9 (8597,1809,3182)

(X,¥,Z): X In training, y in development, and z in test
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Evaluation: Scoring Setting

Scores obtained by submitting our output to the official
online evaluation tool under the approximate span,
recursive evaluation setting
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Results on the BioNLP’13 Test Data

System Rec. |Prec. |F1

Our System 48.95159.24|53.61
EVEX (Hakala et al., 2013) 45.44158.0350.97
TEES-2.1 (Bjorne and Salakoski. 2013) [46.17]56.32|50.74
BIOSEM (Bui et al., 2013) 42.47162.83(50.68
NCBI (Liu et al., 2013) 40.53161.72148.93
DLUTNLP (Lietal., 2013a) 40.8157.00(47.56

Best systems on this dataset:
e EVEX, TEES-2.1 and DLUTNLP: pipeline learning systems
e BIOSEM: a rule based system
e NCBI: the only joint model using subgraph isomorphism

Our system beats the best-performing system
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Comparison with Baseline on BioNLP’13

SVM MLN+SVM
Type Rec. |Prec. |F1 Rec. |Prec. | F1
Simple 64.47|87.89|74.38|73.11]78.99|75.94

Protein-Mod |66.49|79.87 |72.5772.2569.70|70.95
Binding 39.04150.0043.84|(48.05|43.84|45.85
Regulation |23.51(56.21|33.15|]36.47|50.86|42.48
Overall 37.90|67.88 |48.64 || 48.95|59.24|53.61

120




Comparison with Baseline on BioNLP’13

SVM MLN+SVM
Type Rec. |Prec. |F1 Rec. |Prec. | F1
Simple 64.47|87.89|74.38|73.11]78.99|75.94

Protein-Mod |66.49|79.87 |72.5772.2569.70|70.95
Binding 39.04150.0043.84|(48.05|43.84|45.85
Regulation |23.51(56.21|33.15|]36.47|50.86|42.48
Overall 37.90|67.88 |48.64 || 48.95|59.24|53.61

MLN+SVM beats our SVM baseline by nearly 5 points
- Joint inference using MLN is important
- Performance on Regulation events improves by 9.33 points
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Results on the BioNLP’11 Test Data

System Rec. |Prec. |F1
Our System 53.42163.61 |58.07
Miwal2 (Miwa et al., 2012) 53.35|63.48(57.98

Riedell 1l (Riedel et al., 2011) — — 56
UTurku (Bjorne and Salakoski, 2011) [49.56 |57.65{53.30
MSR-NLP (Quirk et al., 2011) 48.64154.71(151.50

Best systems on this dataset:

e Miwal2: a pipeline system using coreference features
e Riedel11: a joint model using dual decomposition
e Uturku and MSR-NLP: pipeline systems

122




Results on the BioNLP’11 Test Data

System Rec. |Prec. |F1
Our System 53.42163.61 |58.07
Miwal2 (Miwa et al., 2012) 53.35|63.48(57.98

Riedelll (Riedel et al., 2011) — — 56
UTurku (Bjorne and Salakoski, 2011) [49.56 |57.65{53.30
MSR-NLP (Quirk et al., 2011) 48.64154.771(51.50

Best systems on this dataset:
e Miwal2: a pipeline system using coreference features
e Riedel11: a joint model using dual decomposition
e Uturku and MSR-NLP: pipeline systems
Even without using coreference features, our system
e performs marginally better than Miwai12
e beats the best joint model and other two best pipeline models
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Results on the BioNLP’09 Test Data

System Rec. |Prec. |F1
Miwal2 (Miwa et al., 2012) 52.67(65.19]58.27
Our System 53.96|63.08|58.16
Riedelll (Riedel et al., 2011) — — 57.4
MiwalO (Miwa et al., 2010a) 50.13|64.16]56.28
Bjorne (Bjorne et al., 2009) 46.73|58.48|51.95
PoonMLN (Poon&Vanderwende.,2010)|43.7 |58.6 |[50.0
RiedeIMLN (Riedel et al.. 2009) 36.9 [55.6 |444

Best systems on this dataset:

 Miwal2: a pipeline system with a coreference feature
» Riedel11: a joint model using dual decomposition

e Miwa10 and Bjorne: pipeline systems without coreference features

e PoonMLN and RiedelMLN: MLN-based systems




Results on the BioNLP’09 Test Data

System Rec. |Prec. |F1
Miwal2 (Miwa et al., 2012) 52.67(65.19]58.27
Our System 53.96|63.08|58.16
Riedelll (Riedel et al., 2011) — — 57.4
MiwalO (Miwa et al., 2010a) 50.13|64.16]56.28
Bjorne (Bjorne et al., 2009) 46.73|58.48|51.95
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Best systems on this dataset:

 Miwal2: a pipeline system with a coreference feature
» Riedel11: a joint model using dual decomposition

e Miwa10 and Bjorne: pipeline systems without coreference features

e PoonMLN and RiedelMLN: MLN-based systems




Results on the BioNLP’09 Test Data

System Rec. |Prec. |F1
Miwal2 (Miwaet al., 2012) 52.67|65.19|58.27
Our System 53.96|63.08|58.16
Riedelll (Riedel et al., 2011) — — 574
MiwalO (Miwa et al.. 2010a) 50.13|64.16|56.28
Bjorne (Bjorne et al., 2009) 46.73|58.48|51.95
PoonMLN (Poon&Vanderwende,2010)|43.7 |58.6 |50.0
RiedeIMLN (Riedel et al., 2009) 36.9 |55.6 |44.4

Our system

e outperforms previous MLN-based systems, the best joint model,

and pipeline systems without coreference features

o j i W W . which u
s only marginally worse than Miwa12, which uses coreference

features
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Summary

Presented a general approach for exploiting the power of
high-dimensional features in MLNs

Obtained the best or second best score on the three Genia

event extraction datasets
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