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Weakly Supervised Learning

u Supervised approaches

» require a lot of annotated data that could be expensive or
even impractical to obtain

u Weakly supervised approaches
» address the need for cost-effective annotation methods
» idea: bootstrap from a small set of labeled data



Multi-View Weakly Supervised Learning

u  Multi-view weakly supervised learning algorithms

» bootstrap from a small set of labeled data using separate,
but redundant views (i.e. disjoint feature subsets) of the data

» e.g. co-training (Blum and Mitchell, 1998)
co-EM (Nigam and Ghani, 2000)

u Strong assumptions on the views (Blum and Mitchell, 1998)
» each view must be sufficient for learning the target concept
» the views must be conditionally independent given the class

u Empirically shown to be sensitive to these assumptions
(Muslea et al., 2002)

u Conditional independence assumption can be relaxed
(Nigam and Ghani, 2000; Abney, 2002)



Multi-View Weakly Supervised Learning

u Finding a pair of views that largely satisfies both
conditions is non-trivial

» In practice, users determine a natural feature split into views
that are expected to satisfy the two conditions

» precludes the use of multi-view weakly supervised
algorithms on problems without a natural feature split

u Hypothesis: single-view weakly supervised algorithms can
potentially better than their multi-view counterparts on
these problems



Goals of the Study

u Take one problem without a natural feature split and apply
It to a multi-view weakly supervised learner and two
single-view weakly supervised learners

» Multi-view
co-training (Blum and Mitchell, 1998)

» Single-view
self-training with bagging (Banko and Brill, 2001)
weakly supervised EM (Nigam et al., 2000)



Outline of the Talk

u Weakly supervised learning algorithms
» CO-training
» self-training with bagging
» weakly supervised EM
u A learning task without a natural feature split

v Evaluation

u An EM-based bootstrapping algorithm
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Co-Training [Blum and Mitchell, 1998]

u  Multi-view algorithm

u A number of parameters need to be tuned
» views, data pool size, growth size, number of iterations

u The algorithm is sensitive to its input parameters
(Nigam and Ghani, 2000; Pierce and Cardie, 2001)
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Self-Training with Bagging [Banko and Brill, 2001]
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Self-Training with Bagging [Banko and Brill, 2001]
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Self-Training with Bagging [Banko and Brill, 2001]

u Single-view algorithm
u Given the labeled and unlabeled data, only need to decide
the number of bags to use
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Weakly Supervised EM [Nigam et al., 2000]
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Weakly Supervised EM [Nigam et al., 2000]
u A single-view algorithm

u Given the labeled and unlabeled data, only need to decide
the number of iterations to run EM
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Outline of the Talk

u

u A learning task without a natural feature split
4
4
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Noun Phrase Coreference

ldentify all noun phrases that refer to the same entity

Condoleezza Rice is a tenured professor in Stargord’
political science departmertier interest in political
science was stimulated by Josef Korbel, who is érm

Secretary of State Madeleine Albright’s father...
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Outline of the Talk

u

u A learning task without a natural feature split
» supervised and weakly supervised approaches
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The Supervised Learning Approach

u A two-step approach: classification + clustering

u Classification

» classifies a pair of NPs as coreferent or not based on
constraints learned from annotated data

u Clustering

» coordinates the possibly contradictory pairwise
classifications and constructs a partition on the set of NPs
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The Weakly Supervised Learning Approach

u Use a weakly supervised algorithm to bootstrap the
coreference classifier from a small set of labeled data

u The clustering mechanism is not manipulated by the
bootstrapping procedure
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The Coreference Resolution System

u Learning algorithm
» nalve Bayes

u Clustering algorithm
» best-first clustering

u Instance representation
» 25 features per instance (created from each pair of NPSs)
lexical
grammatical
semantic
positional
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Any Natural Feature Split for Coreference?

u Views cannot be drawn from the left-hand and right-hand
context

u Views cannot be drawn from features inside and outside
the phrase under consideration

u View factorization is a non-trivial problem for coreference
» Mueller et al.’s (2002) greedy method
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Outline of the Talk

u Weakly supervised learning algorithms
» CO-training
» self-training with bagging
» weakly supervised EM

u A learning task without a natural feature split
» supervised and weakly supervised approaches

u Evaluation

u An EM-based bootstrapping algorithm
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Data Sets

u MUC-6 and MUC-7 coreference data sets
» Documents annotated with coreference information
» MUC-6: 30 dryrun texts + 30 evaluation texts
» MUC-7: 30 dryrun texts + 20 evaluation texts

u Evaluation texts
» reserved for testing

u Dryrun texts
» one used as labeled data (L)
» remaining 29 as unlabeled data (U)
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Results (Baseline)

u train a naive Bayes classifier on the single (labeled) text using

all 25 features

MUC-6 MUC-7
R P F| R P F
Baseline 583 529 555 | 528 374 438
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Evaluating the Weakly Supervised Algorithms

u Determine the best parameter setting of each algorithm (in
terms of its effectiveness in improving performance)

42



Co-Training Parameters

u Views (3 heuristic methods for view factorization)
» Mueller et al.’s (2002) greedy method
» random splitting
» splitting according to the feature type

u Pool size
» 500, 1000, 5000

u Growth size
» 10, 50, 100, 200, 250

u Number of co-training iterations
» run until performance stabilized
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Results (Co-Training)

MUC-6 MUC-7
R P F R P F
Baseline 58.3 529 555 | 528 374 43.8
Co-Training 475 819 601 | 406 776 53.3

u Co-training produces improvements over the baseline at its

best parameter settings
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Learning Curve for Co-Training
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Self-Training Parameters

u Number of bags
» tested all odd number of bags between 1 and 25

u 25 bags are sufficient for most learning tasks (Breiman,
1996)
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Results (Self-Training with Bagging)

MUC-6 MUC-7
R P F R P F
Baseline 583 529 555 | 528 374 43.8
Co-Training 4785 819 BOI § 4dlb B 949
Self-Training with Bagging b11 7868 B4l 56 6.6 583

u Self-training performs better than co-training
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Self-Training: Effect of the Number of Bags (MUC-6)
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EM Parameters

u Number of iterations
» run until convergence
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Results (EM)

MUC-6 MUC-7
R P F R P F
Baseline fes =70 883 B8 14 438
Co-Training 475 819 601 | 406 776 533
Self-Training with Bagging 541 786 641 | 546 626 58.3
EM 648 518 57.6 | 541 407 464

u EM only gives rise to modest performance gains over the
baseline
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Results (EM)

MUC-6 MUC-7
R P F R P F
Baseline 583 529 555 | 528 374 43.8
Co-Training 475 819 601 | 406 776 533
Self-Training with Bagging 541 786 641 | 546 626 58.3
EM 648 518 57.6 | 541 407 464

u EM does not perform as well as co-training
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Summary of Results

u Applied one multi-view weakly supervised algorithm and
two single-view algorithms to coreference resolution

» Co-training outperforms the baseline at its best parameter
setting

» Self-training with bagging significantly outperforms co-
training

» EM only performs slightly better than the baseline
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Why EM Doesn’'t Work Well

u Hypothesis: generative model is not correct

u Plausible solution: improve the model via feature selection

u The feature selection algorithm
» Imposes a total ordering on the features
» selects the first n features
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The Feature Selection Algorithm
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The Feature Selection Algorithm
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The Feature Selection Algorithm
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The Feature Selection Algorithm
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Results (FS-EM)

MUC-6 MUC-7
R P F R P F
Baseline 583 529 555 | 528 374 43.8
Co-Training 7 o9 B0l s 776 538
Self-Training with Bagging 541 786 641 | 546 626 58.3
EM 648 518 57.6 | 541 407 464
FS-EM 642 666 654 | 533 703 605

u FS-EM performs better than co-training

75



Results (FS-EM)

MUC-6 MUC-7
R P F R P F
Baseline 58.3 529 555 | 528 374 43.8
Co-Training 475 819 60.1 | 406 776 53.3
Self-Training with Bagging 541 786 641 | 546 626 58.3
EM 648 518 57.6 | 541 40.7 46.4
FS-EM i he Bhd 00 8 BUS

u FS-EM performs slightly better than self-training with bagging
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Summary

u Investigated single-view weakly supervised algorithms as
an alternative to multi-view algorithms for coreference
resolution

» Self-training with bagging outperforms co-training under
various parameter settings

» EM does not outperform co-training, but FS-EM does
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