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Weakly Supervised Learning

u Supervised approaches
� require a lot of annotated data that could be expensive or 

even impractical to obtain 

u Weakly supervised approaches
� address the need for cost-effective annotation methods 
� idea: bootstrap from a small set of labeled data
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Multi-View Weakly Supervised Learning

u Multi-view weakly supervised learning algorithms
� bootstrap from a small set of labeled data using separate, 

but redundant views (i.e. disjoint feature subsets) of the data
� e.g. co-training (Blum and Mitchell, 1998)                              

co-EM (Nigam and Ghani, 2000)

u Strong assumptions on the views (Blum and Mitchell, 1998)

� each view must be sufficient for learning the target concept
� the views must be conditionally independent given the class 

u Empirically shown to be sensitive to these assumptions 
(Muslea et al., 2002)

u Conditional independence assumption can be relaxed 
(Nigam and Ghani, 2000; Abney, 2002)
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Multi-View Weakly Supervised Learning 

u Finding a pair of views that largely satisfies both 
conditions is non-trivial
� in practice, users determine a natural feature split into views 

that are expected to satisfy the two conditions
� precludes the use of multi-view weakly supervised 

algorithms on problems without a natural feature split

u Hypothesis: single-view weakly supervised algorithms can 
potentially better than their multi-view counterparts on 
these problems
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Goals of the Study

u Take one problem without a natural feature split and apply 
it to a multi-view weakly supervised learner and two 
single-view weakly supervised learners 
� Multi-view

n co-training (Blum and Mitchell, 1998)
� Single-view

n self-training with bagging (Banko and Brill, 2001)
n weakly supervised EM (Nigam et al., 2000)
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Outline of the Talk

u Weakly supervised learning algorithms 
� co-training
� self-training with bagging
� weakly supervised EM

u A learning task without a natural feature split

u Evaluation

u An EM-based bootstrapping algorithm
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Co-Training [Blum and Mitchell, 1998]
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Unlabeled data (U)
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Unlabeled data (U)
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Unlabeled data (U) Data pool (D)
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Unlabeled data (U) Data pool (D)

x

Co-Training [Blum and Mitchell, 1998]

Labeled data (L)

Classifier h 1

x x x x

x xx x
x

x
x xx
x

x
x x x x

x

x
x

x

x x x
xx

Classifier h 2

x

view V1 view V2

most confident most confident



September1999
13

u Multi-view algorithm

u A number of parameters need to be tuned
� views, data pool size, growth size, number of iterations

u The algorithm is sensitive to its input parameters
(Nigam and Ghani, 2000; Pierce and Cardie, 2001)

Co-Training [Blum and Mitchell, 1998]
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Unlabeled data (U)

Self-Training with Bagging [Banko and Brill, 2001]
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Unlabeled data (U)

Labeled data (L)
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Unlabeled data (U)
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Unlabeled data (U)
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u Single-view algorithm
u Given the labeled and unlabeled data, only need to decide 

the number of bags to use

Self-Training with Bagging [Banko and Brill, 2001]
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Weakly Supervised EM [Nigam et al., 2000]
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Weakly Supervised EM [Nigam et al., 2000]

Labeled data (L)

Unlabeled data (U)
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Weakly Supervised EM [Nigam et al., 2000]
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Weakly Supervised EM [Nigam et al., 2000]
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Probabilistically Labeled Data
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Probabilistically Labeled Data
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u A single-view algorithm

u Given the labeled and unlabeled data, only need to decide 
the number of iterations to run EM

Weakly Supervised EM [Nigam et al., 2000]
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Outline of the Talk

u Weakly supervised learning algorithms 
� co-training
� self-training with bagging
� weakly supervised EM

u A learning task without a natural feature split
� supervised approaches
� weakly supervised approaches

u Evaluation

u An EM-based bootstrapping algorithm
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Condoleezza Rice is a tenured professor in Stanford’s 

political science department.Her interest in political 

science was stimulated by Josef Korbel, who is former 

Secretary of State Madeleine Albright’s father... 

Noun Phrase Coreference

Identify all noun phrases that refer to the same entity
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Outline of the Talk

u Weakly supervised learning algorithms 
� co-training
� self-training with bagging
� weakly supervised EM

u A learning task without a natural feature split
� supervised and weakly supervised approaches

u Evaluation

u An EM-based bootstrapping algorithm
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u A two-step approach: classification + clustering

u Classification
� classifies a pair of NPs as coreferent or not based on 

constraints learned from annotated data

u Clustering
� coordinates the possibly contradictory pairwise

classifications and constructs a partition on the set of NPs

The Supervised Learning Approach
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u Use a weakly supervised algorithm to bootstrap the 
coreference classifier from a small set of labeled data

u The clustering mechanism is not manipulated by the 
bootstrapping procedure

The Weakly Supervised Learning Approach
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u Learning algorithm
� naïve Bayes

u Clustering algorithm
� best-first clustering

u Instance representation
� 25 features per instance (created from each pair of NPs)

n lexical 
n grammatical 
n semantic 
n positional 

The Coreference Resolution System
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Any Natural Feature Split for Coreference?

u Views cannot be drawn from the left-hand and right-hand 
context

u Views cannot be drawn from features inside and outside 
the phrase under consideration

u View factorization is a non-trivial problem for coreference
� Mueller et al.’s (2002) greedy method
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Outline of the Talk

u Weakly supervised learning algorithms 
� co-training
� self-training with bagging
� weakly supervised EM

u A learning task without a natural feature split
� supervised and weakly supervised approaches

u Evaluation

u An EM-based bootstrapping algorithm
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Data Sets

u MUC-6 and MUC-7 coreference data sets
� Documents annotated with coreference information
� MUC-6: 30 dryrun texts + 30 evaluation texts
� MUC-7: 30 dryrun texts + 20 evaluation texts

u Evaluation texts 
� reserved for testing

u Dryrun texts
� one used as labeled data (L)
� remaining 29 as unlabeled data (U)
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Results (Baseline)

u train a naïve Bayes classifier on the single (labeled) text using 
all 25 features

MUC-6 MUC-7 
 

R P F R P F 

Baseline 58.3 52.9 55.5 52.8 37.4 43.8 
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u Determine the best parameter setting of each algorithm (in 
terms of its effectiveness in improving performance)

Evaluating the Weakly Supervised Algorithms
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Co-Training Parameters

u Views (3 heuristic methods for view factorization)
� Mueller et al.’s (2002) greedy method
� random splitting
� splitting according to the feature type 

u Pool size
� 500, 1000, 5000

u Growth size
� 10, 50, 100, 200, 250

u Number of co-training iterations
� run until performance stabilized
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Results (Co-Training)

u Co-training produces improvements over the baseline at its 
best parameter settings 

MUC-6 MUC-7 
 

R P F R P F 

Baseline 58.3 52.9 55.5 52.8 37.4 43.8 

Co-Training 47.5 81.9 60.1 40.6 77.6 53.3 
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Learning Curve for Co-Training (MUC-6)
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Learning Curve for Co-Training (MUC-6)
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Self-Training Parameters

u Number of bags
� tested all odd number of bags between 1 and 25

u 25 bags are sufficient for most learning tasks (Breiman, 
1996)
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Results (Self-Training with Bagging)

u Self-training performs better than co-training

MUC-6 MUC-7 
 

R P F R P F 

Baseline 58.3 52.9 55.5 52.8 37.4 43.8 

Co-Training 47.5 81.9 60.1 40.6 77.6 53.3 

Self-Training with Bagging 54.1 78.6 64.1 54.6 62.6 58.3 
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Self-Training: Effect of the Number of Bags (MUC-6)
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EM Parameters

u Number of iterations
� run until convergence
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Results (EM)

u EM only gives rise to modest performance gains over the 
baseline

MUC-6 MUC-7 
 

R P F R P F 

Baseline 58.3 52.9 55.5 52.8 37.4 43.8 

Co-Training 47.5 81.9 60.1 40.6 77.6 53.3 

Self-Training with Bagging 54.1 78.6 64.1 54.6 62.6 58.3 

EM 64.8 51.8 57.6 54.1 40.7 46.4 
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Results (EM)

u EM does not perform as well as co-training

MUC-6 MUC-7 
 

R P F R P F 

Baseline 58.3 52.9 55.5 52.8 37.4 43.8 

Co-Training 47.5 81.9 60.1 40.6 77.6 53.3 

Self-Training with Bagging 54.1 78.6 64.1 54.6 62.6 58.3 

EM 64.8 51.8 57.6 54.1 40.7 46.4 
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Summary of Results

u Applied one multi-view weakly supervised algorithm and 
two single-view algorithms to coreference resolution

� Co-training outperforms the baseline at its best parameter 
setting

� Self-training with bagging significantly outperforms co-
training 

� EM only performs slightly better than the baseline
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Why EM Doesn’t Work Well

u Hypothesis: generative model is not correct

u Plausible solution: improve the model via feature selection

u The feature selection algorithm
� imposes a total ordering on the features
� selects the first n features
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The Feature Selection Algorithm
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The Feature Selection Algorithm

Training data 
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The Feature Selection Algorithm
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Validation data
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The Feature Selection Algorithm
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The Feature Selection Algorithm
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The Feature Selection Algorithm
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The Feature Selection Algorithm
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The Feature Selection Algorithm

Scoring function

Score fi

fi

Classifier

EM

Accuracy on labeled data

Quality of bootstrapped data

Labeled data (L)

Labeled data (L)

Probabilistically 
labeled data

Features selected 
thus far (S)



September1999
75

Results (FS-EM)

u FS-EM performs better than co-training

MUC-6 MUC-7 
 

R P F R P F 

Baseline 58.3 52.9 55.5 52.8 37.4 43.8 

Co-Training 47.5 81.9 60.1 40.6 77.6 53.3 

Self-Training with Bagging 54.1 78.6 64.1 54.6 62.6 58.3 

EM 64.8 51.8 57.6 54.1 40.7 46.4 

FS-EM 64.2 66.6 65.4 53.3 70.3 60.5 
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Results (FS-EM)

u FS-EM performs slightly better than self-training with bagging

MUC-6 MUC-7 
 

R P F R P F 

Baseline 58.3 52.9 55.5 52.8 37.4 43.8 

Co-Training 47.5 81.9 60.1 40.6 77.6 53.3 

Self-Training with Bagging 54.1 78.6 64.1 54.6 62.6 58.3 

EM 64.8 51.8 57.6 54.1 40.7 46.4 

FS-EM 64.2 66.6 65.4 53.3 70.3 60.5 
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Summary

u Investigated single-view weakly supervised algorithms as 
an alternative to multi-view algorithms for coreference
resolution

� Self-training with bagging outperforms co-training under 
various parameter settings 

� EM does not outperform co-training, but FS-EM does


