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Fine-Grained Opinion Extraction

Involves extracting opinions from text documents

Different from document-level opinion mining
e E.g., determine whether a review is thumbs up or thumbs down

Occurs at the sentence and phrase levels




Fine-Grained Opinion Extraction

Subtask 1: Entity extraction
e Extracts three types of entities
e opinions
- their sources (who expressed the opinions?)
- their targets (what the opinions are about)
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Fine-Grained Opinion Extraction

o Subtask 2: Relation extraction

e Extracts two types of relations
- is_from (between an opinion and its source)
- is about (between an opinion and its target)

is_about

The agency@tha@was favorable,

but their partners are still not satisfied.

11




Fine-Grained Opinion Extraction

» Subtask 2: Relation extraction
e Extracts two types of relations
- is_from (between an opinion and its source)
- is about (between an opinion and its target)

The agency considered that(the tradenyas favorable,

iIs_about
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Challenges

Two opinions can share the same target
e the trade is the target of both considered and not satisfied

An opinion can be associated with more than one
source/target

Whether a word is an opinion is context-dependent
e a given word can sometimes be an opinion and sometimes not
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Previous Approaches

* Pipeline approach

document = ks Relation
extraction extraction

Extract the For each pair of entities
3 types of extracted, determine what
entities type of relation exists

between them, if any
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Weakness of the Pipeline Approach

Error propagation

e Errors made by the entity extraction component will be
propagated to the relation extraction component

The agency considered that the trade was favorable,

but their partners are still not satisfied.
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Weakness of the Pipeline Approach

* Error propagation

e Errors made by the entity extraction component will be
propagated to the relation extraction component

The agency considered that(the trade)was favorable,

but their partners are still not satisfi

iIs_about
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Addressing Error Propagation

Integer Linear Programming (ILP) [Yang & Cardie, 2013]
e To be robust to the errors, generate lots of entity candidates

The agency considered that the trade was favorable,

but their partners are still not satisfied.
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Addressing Error Propagation

* Integer Linear Programming (ILP) [Yang & Cardie, 2013]
e To be robust to the errors, generate lots of entity candidates
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The agency considered that the trade was favorable,
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Integer Linear Programming (ILP)

A constrained optimization framework
* Optimize an objective function subject to linear constraints

For fine-grained opinion extraction,

e Objective function: combines confidence values from the
classifiers trained for both subtasks

e Goal: re-classify each test instance so that the resulting set of
classifications collectively optimize the objective function

=




Integer Linear Programming (ILP)

A constrained optimization framework
e Optimize an objective function subject to linear constraints

For fine-grained opinion extraction,

e Objective function: combines confidence values from the
classifiers trained for both subtasks

e Goal: re-classify each test instance so that the resulting set of
classifications collectively optimize the objective function

This is a joint inference process

* When optimizing objective function, test instances from the
subtasks are not being re-classified independently

« Both subtasks can influence each other .




Constraints for ILP

The constraints are important
e Constraints we want the outputs of the 2 subtasks to satisfy

e E.g., if two entity candidates have an is_from relation, then one
of them has to be a source and the other has to be an opinion

Designing good constraints is crucial to ILP’s performance
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Our Goal

Improve the state of the art on this task by proposing
 New feature: feature derived from a factuality lexicon
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Our Goal

Improve the state of the art on this task by proposing
 New feature: feature derived from a factuality lexicon
e New approach: Markov Logic Networks (MLNSs)

« can perform joint inference
« but much less used in NLP tasks than ILP
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MLNs: Better than ILP?

MLNs allow constraints to be specified in a more intuitive
and compact manner

e |LP is propositional, MLNs employ first-order logic
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MLNs: Better than ILP?

MLNs allow constraints to be specified in a more intuitive
and compact manner

e |LP is propositional, MLNs employ first-order logic

MLNs make it easy to specify soft constraints
e not easy to encode soft constraints in ILP
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Plan for the Talk

Corpus

Baseline systems
Our approach
Evaluation

32




Plan for the Talk

e Corpus

» Baseline systems
* Our approach

» Evaluation

33




Corpus

MPQA 2.0 corpus

e 433 documents
» 8377 sentences
4717 opinions, 4680 targets, and 5505 sources
13046 is about relations, 9763 is from relations
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Baseline 1: Pipeline Approach

document = ks Relation
extraction extraction
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document Ent'tY Re|atI9n
extraction extraction
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* To train the entity extraction model,
* Recast the task as a sequence labeling task

« Each training instance corresponds to a word token

- 4 types of features
« Trained a CRF model
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Baseline 1: Pipeline Approach

AN
Entity Relation
extraction extraction

document ==

* For relation extraction,
e Train two binary SVM classifiers (is_from and is_about)
« To create training instances for these classifiers,
- pair each opinion with each source/target
- 2 types of features

e A testinstance is created by pairing each opinion with each
source/target extracted by the CRF




Baseline 2: Yang & Cardie’s ILP Approach

ILP: a constrained optimization framework

e Goal: optimize objective function (composed of the confidence
values returned by the CRF and the SVM classifiers) subject to
a set of linear constraints

» constraints taken from Y&C

Need to generate many entity candidates
e Obtain them the 30-best CRF outputs
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Plan for the Talk

Corpus
Baseline systems
e Pipeline approach
e Yang & Cardie’s ILP approach
Our approach
* New feature based on factuality lexicon
e MLN formulation
Evaluation
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Factuality Lexicon

Mary suspects that John left Miami.
Mary knows that John left Miamiu.
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Factuality Lexicon

Mary suspects that John left Miami.
Mary knows that John left Miamu.

Sauri (2009) divided verbs into 49 categories
e suspects belongs to category Conjecture

e knows belongs to category Disclose
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Factuality Lexicon

Mary suspects that John left Miami.

Mary knows that John left Miamu.

Sauri (2009) divided verbs into 49 categories
e suspects belongs to category Conjecture
« verbs in Conjecture are likely to correspond to opinions
* knows belongs to category Disclose
« verbs in Disclose are likely to correspond to facts
e These categories are helpful for identifying opinions
e Train the CRF with an additional feature
- value is the category to which the verb belongs
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MLN Formulation: OpinMLN

lls_about(i,i) .

lIs_from(i,i) .

OneBest(i,c) = Type(i,c) .

w, Is_from(i,j) = Type(i,O)

we Is_from(i,j) = Type(],S)

wg Is_about(i,j) = Type(i,O)

w- Is_about(i,)) = Type(],T)

wg Overlap(i,j) = Type(i,N) v Type(},N)
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4 predicates

MLN Formulation: Opin gery predicates:

=z Type(i,c)
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OneBest(i,c) = Type(i,c) . Evidence predicates:
w, Is_from(i,j) = Type(i,O) Overlap(i,))

w Is_from(i,j) > Type(j,S) OnElEesile)
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MLN Formulation: OpinMLN

lls_about(i,i) . A span i cannot have any
lIs_from(i,i) . relation with itself
OneBest(i,c) = Type(i,c) .

w, Is_from(i,j) = Type(i,O)

we Is_from(i,j) = Type(],S)

wg Is_about(i,j) = Type(i,O)

w- Is_about(i,)) = Type(],T)
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MLN Formulation: OpinMLN

lls_about(i,i) .

' = ,(, ) If the 1-best CRF output
lIs_from(i,i) . says span i has entity type
OneBest(i,c) = Type(i,c) . c, we will label span i as

w, Is_from(i,j) > Type(i,O) an entity with type c

we Is_from(i,j) = Type(],S)

wg Is_about(i,j) = Type(i,O)

w- Is_about(i,)) = Type(],T)

wg Overlap(i,j) = Type(i,N) v Type(},N)

51




MLN Formulation: OpinMLN

lls about(i,i) . ,
| o .(. ) First 3 are to be enforced
lIs_from(i,i) . as hard constraints

OneBest(i,c) =2 Type(i,c) .

w, Is_from(i,j) = Type(i,O)

we Is_from(i,j) = Type(],S)
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MLN Formulation: OpinMLN

lls_about(i,i) . - .

| = The remaining constraints
lIs_from(i,i) . are to be enforced as soft
OneBest(i,c) = Type(i,c) . constraints

w, Is_from(i,j) = Type(i,O)

w. Is_from(i,j) > Type(j,S) Weight indicates how

= : Important it is to satisfy the
w, Is_about(i,j) = Type(i,O) constraint

w- Is_about(i,)) = Type(],T)
wg Overlap(i,j) = Type(i,N) v Type(j,N)
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MLN Formulation: OpinMLN

lls_about(i,i) .
lIs_from(i,i) .
OneBest(i,c) = Type(i,c) . If spaniisinanis from
w, Is_from(i,j) = Type(i,O) relation with span j, then

| _f NS T g | should be an opinion and
W, S o)) ype(,S) j should be a source

wg Is_about(i,j) = Type(i,O)
w- Is_about(i,)) = Type(],T)
wg Overlap(i,j) = Type(i,N) v Type(},N)
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MLN Formulation: OpinMLN

lls_about(i,i) .
lIs_from(i,i) .
OneBest(i,c) = Type(i,c) .
w, Is_from(i,j) = Type(i,O)
we Is_from(i,j) = Type(],S)
wg Is_about(i,j) = Type(i,O)
w- Is_about(i,)) = Type(],T)
wg Overlap(i,j) = Type(i,N) v Type(j,N)
If span i overlaps with

span j, then eitheriorjis
not a real entity
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Incorporating Prior Knowledge

Like ILP, the MLN exploits the CRF and SVM'’s outputs

e Model their outputs as soft evidence
« Our prior belief that a grounded query predicate is true
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Evaluation

MPQA 2.0 corpus

e 433 documents
« 397 documents for training, 36 documents for testing

Evaluation metrics
e precision, recall, F1-score for both subtasks
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Results: Entity Extraction

Target
F1
Pipeline 4.9 38.5 99.3
Duplicated Y&C'’s ILP 59.4 40.1 48.1




Results: Entity Extraction

Target
F1
Pipeline 4.9 38.5 99.3
Duplicated Y&C'’s ILP 59.4 40.1 48.1

* ILP is better than Pipeline on Opinion and Target extraction
but worse on Source extraction

e |[LP doesn’t always yield improvements
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Results: Entity Extraction

Target
F1

Pipeline 4.9 38.5 99.3
Duplicated Y&C'’s ILP 59.4 40.1 48.1
OpinMLN-+factuality 59.1 43.5 62.1

e Our MLN approach performs significantly better than the two
baselines on Source and Target extraction

o Statistically tied with ILP on Opinion extraction
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Results: Relation Extraction

Pipeline 19.8
Duplicated Y&C's ILP 14.2

* [LP underperforms Pipeline

22.7
19.4




Results: Relation Extraction

Pipeline 19.8 22.7
Duplicated Y&C'’s ILP 14.2 19.4
OpinMLN+factuality 21.4 32.4

* Our MLN approach outperforms both baselines significantly
on both relation types




Summary

presented the first MLN formulation for fine-grained opinion
extraction

showed that OpinMLN significantly outperformed Y&C'’s
state-of-the-art ILP approach on the MPQA corpus when
used in combination with factuality




