# Unsupervised Morphological Learning for Bangla

Sajib Dasgupta and Vincent Ng
Human Language Technology Research Institute
University of Texas at Dallas

## Morphological Analysis / Word Segmentation

Segment a word into morphemes (roots, prefixes, suffixes)

## Morphological Analysis / Word Segmentation

Segment a word into morphemes (roots, prefixes, suffixes)

#### **§** English:

```
"unforgettable"
= "un" (Prefix) + "forget" (Root) + "able" (Suffix)
```

#### **S** Bangla:

```
"অনাধুনিকভার" (anAdhUnIkTAr)
= "an" (Prefix) + "@dhUnIk" (Root) + "TA" (Suffix) +
"r" (Inflectional Suffix)
```

# Why Morphological Analysis?

- **S** Stemming
- S POS tagging
- S High-level NLP applications (e.g., text classification)

# Why Morphological Analysis?

- Stemming
- S POS tagging
- S High-level NLP applications (e.g., text classification)

- S Knowledge-based approaches
  - Rely on manually designed segmentation heuristics

- S Knowledge-based approaches
  - Rely on manually designed segmentation heuristics
- § Unsupervised approaches
  - Induce morphemes from a large, unannotated corpus

- S Knowledge-based approaches
  - Rely on manually designed segmentation heuristics
- § Unsupervised approaches
  - Induce morphemes from a large, unannotated corpus
  - Successfully applied to many European languages such as English, German, and Dutch (e.g., Goldsmith (2001), Schone and Jurafsky (2001), Freitag (2005))

- S Knowledge-based approaches
  - Rely on manually designed segmentation heuristics
- § Unsupervised approaches
  - Induce morphemes from a large, unannotated corpus
  - Successfully applied to many European languages such as English, German, and Dutch (e.g., Goldsmith (2001), Schone and Jurafsky (2001), Freitag (2005))
  - Not so successful for agglutinative languages such as Finnish and Turkish (see 2006 PASCAL Challenge on Unsupervised Segmentation of Words into Morphemes)

## Goal

Unsupervised morphological analysis for Bangla

## Goal

Unsupervised morphological analysis for Bangla

How difficult is morphological parsing of Bangla?

#### Goal

Unsupervised morphological analysis for Bangla

How difficult is morphological parsing of Bangla?

- S Bangla is highly inflectional but not agglutinative
- S More difficult than English
- S Less difficult than Turkish and Finnish

## Our Unsupervised Word Segmentation Algorithm

#### 1. Morpheme induction

 Induce morphemes from a vocabulary V (a list of words taken from a large, unannotated corpus)

#### 2. Segmentation

Segment a word based on the induced morphemes

## Our Unsupervised Word Segmentation Algorithm

### 1. Morpheme induction

 Induce morphemes from a vocabulary V (a list of words taken from a large, unannotated corpus)

#### 2. Segmentation

Segment a word based on the induced morphemes

## Our Unsupervised Word Segmentation Algorithm

#### 1. Morpheme induction

 Induce morphemes from a vocabulary V (a list of words taken from a large, unannotated corpus)

#### 2. Segmentation

Segment a word based on the induced morphemes

# The Morpheme Induction Algorithm

- S Basic morpheme induction method
- S Three extensions to the basic induction method

## The Morpheme Induction Algorithm

- S Basic morpheme induction method
- S Three extensions to the basic induction method

- Motivated by Keshava and Pitler's (2006) algorithm
- S Let A and B be two character sequences. Assume:
  - 1. AB and A in  $V \Rightarrow B$  is a suffix

- Motivated by Keshava and Pitler's (2006) algorithm
- S Let A and B be two character sequences. Assume:
  - 1. AB and A in  $V \Rightarrow B$  is a suffix
    - "singing" and "sing" ⇒ "ing" is a suffix

- Motivated by Keshava and Pitler's (2006) algorithm
- S Let A and B be two character sequences. Assume:
  - 1. AB and A in  $V \Rightarrow B$  is a suffix
    - "singing" and "sing"  $\Rightarrow$  "ing" is a suffix
  - 2. AB and B in  $V \Rightarrow A$  is a prefix

- Motivated by Keshava and Pitler's (2006) algorithm
- S Let A and B be two character sequences. Assume:
  - 1. AB and A in  $V \Rightarrow B$  is a suffix
    - "singing" and "sing"  $\Rightarrow$  "ing" is a suffix
  - 2. AB and B in  $V \Rightarrow A$  is a prefix
    - "preset" and "set"  $\Rightarrow$  "pre" is a prefix

Problem: Assumption does not always hold

"diverge" and "diver" are in V "ge" is a suffix Wrong!

#### Problem: Assumption does not always hold

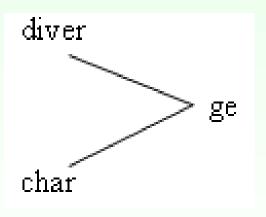
"diverge" and "diver" are in V "ge" is a suffix Wrong!
 Many of the induced prefixes and suffixes are erroneous

Problem: Assumption does not always hold

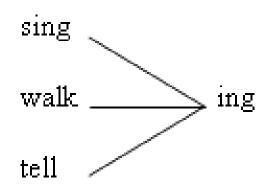
"diverge" and "diver" are in V "ge" is a suffix Wrong!
 Many of the induced prefixes and suffixes are erroneous

Solution: score each induced affix and retain only those whose scores are above a pre-defined threshold

Score(a) = affix-frequency(a) \* length(a)


# **Affix Frequency**

S Number of distinct words in V to which an affix attaches


# **Affix Frequency**

S Number of distinct words in V to which an affix attaches

S Affix frequency of "ge" = 2



\$ Affix frequency of "ing" = 3



# Why Should the Score of an Affix Depend on its Affix Frequency?

S The higher the affix frequency
The more words to which the affix attaches
The more likely the affix is correct

# Why Should the Score of an Affix Depend on its Length?

- Shorter affixes are more likely to be incorrect than longer affixes (Goldsmith (2001))
  - A higher score should be given to a longer affix

| Top-scoring affixes according to metric 1 |       |                 |       |  |  |
|-------------------------------------------|-------|-----------------|-------|--|--|
| Prefix List                               |       | Suffix List     |       |  |  |
| Prefix                                    | Score | Suffix          | Score |  |  |
| bI (বি)                                   | 1054  | Er (ের)         | 19634 |  |  |
| a (অ)                                     | 770   | kE (কে)         | 13456 |  |  |
| p∼rTI (প্ৰতি)                             | 664   | r (র)           | 12747 |  |  |
| mhA (মহা)                                 | 651   | o (%)           | 8213  |  |  |
| p~r (역)                                   | 640   | I (ි)           | 7872  |  |  |
| SU (त्र)                                  | 636   | Sh (সহ)         | 6502  |  |  |
| @ (আ)                                     | 626   | E (©)           | 6218  |  |  |
| bIs~b (বিশ্)                              | 580   | dEr (দের)       | 5874  |  |  |
| bA (বা)                                   | 544   | TE (তে <b>)</b> | 4296  |  |  |
| sIk~FA (শিক্ষা)                           | 500   | gUlo (গুলো)     | 3440  |  |  |
| gN (গণ)                                   | 496   | rA (রা)         | 3262  |  |  |
| prI (পরি)                                 | 486   | tA (টা)         | 2592  |  |  |

| Top-scoring affixes according to metric 1 |       |                |       |  |  |
|-------------------------------------------|-------|----------------|-------|--|--|
| Prefix List                               |       | Suffix List    |       |  |  |
| Pyefix                                    | Score | Suffix         | Score |  |  |
| <b>⊅</b> I (বি)                           | 1054  | Er (ের)        | 19634 |  |  |
| a (অ)                                     | 770   | kE (কে)        | 13456 |  |  |
| p∼rTI (প্ৰতি)                             | 664   | r (র)          | 12747 |  |  |
| mhA (মহা)                                 | 651   | ০ (७)          | 8213  |  |  |
| p~r (엡)                                   | 640   | I (6)          | 7872  |  |  |
| SU (죗)                                    | 636   | Sh (সহ)        | 6502  |  |  |
| @ (আ)                                     | 626   | E (©)          | 6218  |  |  |
| bIs~b (বিশ্)                              | 580   | dEr (দের)      | 5874  |  |  |
| bA (বা)                                   | 544   | TE (ত <b>)</b> | 4296  |  |  |
| sIk~FA (শিক্ষা)                           | 500   | gUlo (গুলো)    | 3440  |  |  |
| gN (গণ)                                   | 496   | rA (রা)        | 3262  |  |  |
| prI (পরি)                                 | 486   | tA (টা)        | 2592  |  |  |

| Top-scoring affixes according to metric 1 |       |                 |       |  |  |
|-------------------------------------------|-------|-----------------|-------|--|--|
| Prefix List                               |       | Suffix List     |       |  |  |
| Prefix                                    | Score | Suffix          | Score |  |  |
| bI (বি)                                   | 1054  | /Er (ের)        | 19634 |  |  |
| a (অ)                                     | 770   | kE (কে)         | 13456 |  |  |
| p∼rTI (প্ৰতি)                             | 664   | r (র)           | 12747 |  |  |
| mhA (মহা)                                 | 651   | ০ (ও)           | 8213  |  |  |
| p~r (೮)                                   | 640   | I (6)           | 7872  |  |  |
| SU (죗)                                    | 636   | Sh (সহ)         | 6502  |  |  |
| @ (আ)                                     | 626   | E (©)           | 6218  |  |  |
| bIs~b (বিশ্ব)                             | 580   | dEr (দের)       | 5874  |  |  |
| bA (বা)                                   | 544   | TE (তে <b>)</b> | 4296  |  |  |
| sIk~FA (শিকা)                             | 500   | gUlo (গুলো)     | 3440  |  |  |
| gN (গণ)                                   | 496   | ুুুম (রা)       | 3262  |  |  |
| prI (পরি)                                 | 486   | tA (টা)         | 2592  |  |  |

| Top-scoring affixes according to metric 1 |       |                 |       |  |  |
|-------------------------------------------|-------|-----------------|-------|--|--|
| Prefix List                               |       | Suffix List     |       |  |  |
| Prefix                                    | Score | Suffix          | Score |  |  |
| bI (বি)                                   | 1054  | Er (ের)         | 19634 |  |  |
| a (অ)                                     | 770   | kE (কে)         | 13456 |  |  |
| p∼rTI (প্ৰতি)                             | 664   | r (র)           | 12747 |  |  |
| mhA (মহা)                                 | 651   | ० (७)           | 8213  |  |  |
| p~r (엡)                                   | 640   | I (ි)           | 7872  |  |  |
| SU (죗)                                    | 636   | Sh (সহ)         | 6502  |  |  |
| @ (আ)                                     | 626   | E (©)           | 6218  |  |  |
| bIs~b (বিশ্)                              | 580   | dEr (দের)       | 5874  |  |  |
| bA (বা)                                   | 544   | TE (তে <b>)</b> | 4296  |  |  |
| sIk~FA (শিক্ষা)                           | 500   | gUlo (গুলো)     | 3440  |  |  |
| gN (গণ)                                   | 496   | rA (রা)         | 3262  |  |  |
| prI (পরি)                                 | 486   | tA (টা)         | 2592  |  |  |

## **Scoring an Affix**

- S We retain an affix in the induced list if and only if its score exceeds the pre-defined threshold
  - ▶ 60 for prefixes and 40 for suffixes

## The Morpheme Induction Algorithm

- S Basic morpheme induction method
  - Prefix and suffix induction
  - Root induction
- S Three improvements to the basic induction method
  - Employing length-dependent thresholds
  - Detecting composite suffixes
  - Detecting incorrect attachments

#### **Basic Root Induction Method**

- S Now, we have a list of induced prefixes and suffixes.
- § For each word w in V, check whether w is divisible based on this affix list.

#### **Basic Root Induction Method**

- S Now, we have a list of induced prefixes and suffixes.
- S For each word w in V, check whether w is divisible based on this affix list.
  - If w = "r + s" or "p + r", where p and s are an induced prefix and suffix respectively and r is another word in the vocabulary, then w is divisible and so w can't be a root.

#### **Basic Root Induction Method**

- S Now, we have a list of induced prefixes and suffixes.
- S For each word w in V, check whether w is divisible based on this affix list.
  - If w = "r + s" or "p + r", where p and s are an induced prefix and suffix respectively and r is another word in the vocabulary, then w is divisible and so w can't be a root.
  - If not, then we add w to the list of candidate roots.

- S Basic morpheme induction method
  - Prefix and suffix induction
  - Root induction
- S Three extensions to the basic induction method
  - Employing length-dependent thresholds
  - Detecting composite suffixes
  - Detecting incorrect attachments

- S Basic morpheme induction method
  - Prefix and suffix induction
  - Root induction
- S Three extensions to the basic induction method
  - Employing length-dependent thresholds
  - Detecting composite suffixes
  - Detecting incorrect attachments

- S Basic morpheme induction method
  - Prefix and suffix induction
  - Root induction
- S Three extensions to the basic induction method
  - Employing length-dependent thresholds
  - Detecting composite suffixes
  - Detecting incorrect attachments

- S Recall that we retain an induced affix in our list if and only if its score exceeds some threshold
  - ▶ 60 for prefixes and 40 for suffixes
  - Threshold is independent of the length of an affix

- S Recall that we retain an induced affix in our list if and only if its score exceeds some threshold
  - ▶ 60 for prefixes and 40 for suffixes
  - Threshold is independent of the length of an affix
- since shorter affixes are more likely to be erroneous, we hypothesize that employing larger thresholds for shorter affixes may yield better performance

- S Recall that we retain an induced affix in our list if and only if its score exceeds some threshold
  - ▶ 60 for prefixes and 40 for suffixes
  - Threshold is independent of the length of an affix
- since shorter affixes are more likely to be erroneous, we hypothesize that employing larger thresholds for shorter affixes may yield better performance
  - ▶ If affix length < 2, multiply threshold by (4 affix length)</p>

- S Recall that we retain an induced affix in our list if and only if its score exceeds some threshold
  - ▶ 60 for prefixes and 40 for suffixes
  - Threshold is independent of the length of an affix
- since shorter affixes are more likely to be erroneous, we hypothesize that employing larger thresholds for shorter affixes may yield better performance
  - ▶ If affix length < 2, multiply threshold by (4 affix length)</p>
  - ▶ E.g., for candidate suffix "j" to remain in the list, it has to attain a score of at least 40\*(4-1) = 120.

- S Basic morpheme induction method
  - Prefix and suffix induction
  - Root induction
- S Three extensions to the basic induction method
  - Employing length-dependent thresholds
  - Detecting composite suffixes
  - Detecting incorrect attachments

# **Detecting Composite Suffixes**

- S Composite suffix
  - formed by concatenating two or more suffixes (e.g., "ers" = "er" + "s").

# **Detecting Composite Suffixes**

- S Composite suffix
  - formed by concatenating two or more suffixes (e.g., "ers" = "er" + "s").
- S Many suffixes in the induced suffix list are composite

# **Detecting Composite Suffixes**

- S Composite suffix
  - formed by concatenating two or more suffixes (e.g., "ers" = "er" + "s").
- S Many suffixes in the induced suffix list are composite
- S Need to remove composite suffixes from the list, because their presence could lead to under-segmentation.
  - ▶ E.g., "singers" should be segmented as "sing+er+s". Without composite suffix detection, it will be segmented as "sing+ers"

Simple concatenation of two suffixes does not always produce a composite suffix.

Simple concatenation of two suffixes does not always produce a composite suffix.

- Simple concatenation of two suffixes does not always produce a composite suffix.
  - ▶ E.g., "en" and "t" are valid suffixes, but "ent" is not a composite suffix

- Simple concatenation of two suffixes does not always produce a composite suffix.
  - ▶ E.g., "en" and "t" are valid suffixes, but "ent" is not a composite suffix
- Same is true for Bangla
  - "TE" ≠ "T" + "E"
  - "Er" ≠ "E" + "r"
  - "Tr" ≠ "T" + "r"

# **How to Detect Composite Suffixes?**

- § Employ two criteria
  - Suffix strength
  - Word-level similarity

#### S Observation:

Let C and S be two suffixes.

If CS is a composite suffix formed from C and S then

affix freq (CS) < affix freq (C)

affix freq (CS) < affix freq (S)

# Affix frequency: Number of distinct words to which an affix attaches

#### S Observation:

Let C and S be two suffixes.

If CS is a composite suffix formed from C and S then

affix freq (CS) < affix freq (C)

affix freq (CS) < affix freq (S)

# Affix frequency: Number of distinct words to which an affix attaches

#### S Observation:

Let C and S be two suffixes.

If CS is a composite suffix formed from C and S then affix freq (CS) < affix freq (C) affix freq (S)

E.g., "ments" is a composite suffix composed of "ment" + "s"

If we count the affix freqs of "ments", "ment", "s" in a large corpus, affix freq ("ments") < affix freq ("ments") < affix freq ("s")

Suffix strength alone can be used to determine that a suffix is non-composite

Consider the Bangla suffix "Er".

```
affix freq ("Er") = 9817
affix freq ("E") = 6218
affix freq ("r") = 1247
So, "Er" can't be a composite suffix.
```

Suffix strength alone can be used to determine that a suffix is non-composite

Consider the Bangla suffix "Er".

```
affix freq ("Er") = 9817

affix freq ("E") = 6218

affix freq ("r") = 1247

So, "Er" can't be a composite suffix.
```

S But suffix strength alone is not sufficient for determining that a suffix is composite.

```
Consider the Bangla suffix "Ar" affix freq ("Ar") < affix freq ("A") and affix freq ("r") But, "Ar" is not a composite suffix.
```

Suffix strength alone can be used to determine that a suffix is non-composite

Consider the Bangla suffix "Er".

```
affix freq ("Er") = 9817
affix freq ("E") = 6218
affix freq ("r") = 1247
So, "Er" can't be a composite suffix.
```

S But suffix strength alone is not sufficient for determining that a suffix is composite.

```
Consider the Bangla suffix "Ar"
  affix freq ("Ar") < affix freq ("A") and affix freq ("r")
  But, "Ar" is not a composite suffix.
                                        Need a second condition 59
```

### S Observation

If a composite suffix (say "ers") attaches to a word (say "sing"), then most likely its first component suffix ("er") does.

#### S Observation

- If a composite suffix (say "ers") attaches to a word (say "sing"), then most likely its first component suffix ("er") does.
  - n A composite suffix and its first component suffix should be similar in terms of the words to which they attach

- S Observation
  - If a composite suffix (say "ers") attaches to a word (say "sing"), then most likely its first component suffix ("er") does.
    - A composite suffix and its first component suffix should be similar in terms of the words to which they attach
  - Formally, if AB is a composite suffix formed from A and B,
     then Number of words to which both AB and A attach

Number of words to which AB attaches

should be large

#### S Observation

- If a composite suffix (say "ers") attaches to a word (say "sing"), then most likely its first component suffix ("er") does.
  - A composite suffix and its first component suffix should be similar in terms of the words to which they attach
- Formally, if AB is a composite suffix formed from A and B, then Number of words to which both AB and A attach

Number of words to which AB attaches

should be large

Word-level similarity

## **Our Composite Suffix Detection Algorithm**

- S Combines these two conditions to determine whether a suffix is composite
- We posit suffix AB as composite if and only if
  - the suffix strength condition is not violated:
     affix freq(AB) < affix freq(A) and affix freq(AB) < affix freq(B)</li>
  - 2. the word-level similarity between A and AB is sufficiently high (> 0.6)

- S Basic morpheme induction method
  - Prefix and suffix induction
  - Root induction
- S Three extensions to the basic induction method
  - Employing length-dependent thresholds
  - Detecting composite suffixes
  - Detecting incorrect attachments

S How should "candidate" be segmented?

- S How should "candidate" be segmented?
  - "candidate" is a root word, so it should not be segmented

- S How should "candidate" be segmented?
  - "candidate" is a root word, so it should **not** be segmented
  - However, given our affix induction algorithm, we would erroneously segment it as "candid" + "ate"

- S How should "candidate" be segmented?
  - "candidate" is a root word, so it should **not** be segmented
  - However, given our affix induction algorithm, we would erroneously segment it as "candid" + "ate"

a word in V

an induced suffix

- S How should "candidate" be segmented?
  - "candidate" is a root word, so it should **not** be segmented
  - However, given our affix induction algorithm, we would erroneously segment it as "candid" + "ate"

a word in V an induced suffix

- S Problem
  - Failure to recognize that "candidate" is a root itself, resulting in over-segmentation

- S How should "candidate" be segmented?
  - "candidate" is a root word, so it should not be segmented
  - However, given our affix induction algorithm, we would erroneously segment it as "candid" + "ate"

a word in V an induced suffix

- S Problem
  - Failure to recognize that "candidate" is a root itself, resulting in over-segmentation
- S Goal
  - To automatically detect that the attachment of the affix "ate" to "candid" to form "candidate" is incorrect

### The Incorrect Attachment Detection Problem

- s "affectionate" = "affection" + "ate" correct
- \$ "candidate" = "candid" + "ate" incorrect

#### **How to Detect Incorrect Attachments?**

- § A simple algorithm
- § Hypothesis

```
w=p+r or w=r+s \Rightarrow freq(w) < freq(r)
where freq(x) is the corpus frequency of word x
```

#### **How to Detect Incorrect Attachments?**

- S A simple algorithm
- \$ Hypothesis  $w=p+r \text{ or } w=r+s \Rightarrow freq(w) < freq(r)$ where freq(x) is the corpus frequency of word x
- S It means that the inflectional or derivational form of a root word occurs less frequently than the root word itself

#### **How to Detect Incorrect Attachments?**

- S A simple algorithm
- § Hypothesis

```
w=p+r or w=r+s \Rightarrow freq(w) < freq(r)
where freq(x) is the corpus frequency of word x
```

- It means that the inflectional or derivational form of a root word occurs less frequently than the root word itself
- Some examples
  - "reopen" = "re" + "open" ⇒ freq(reopen) < freq(open)</p>
  - "opening" = "open" + "ing" ⇒ freq(opening) < freq(open)</p>
  - "unhealthy" = "un" + "healthy" ⇒ freq(unhealthy) < freq(healthy)</p>

## To what extent does our hypothesis hold true?

$$w=p+r \text{ or } w=r+s \Rightarrow freq(w) < freq(r)$$

#### To what extent does our hypothesis hold true?

$$w=p+r \text{ or } w=r+s \Rightarrow freq(w) < freq(r)$$

When evaluated on 286 words randomly chosen from V, the hypothesis is true in 83.56% of the cases.

§ Hypothesis:

 $w=p+r \text{ or } w=r+s \Rightarrow freq(w) < freq(r)$ 

§ Hypothesis:

$$w=p+r \text{ or } w=r+s \Rightarrow freq(w) < freq(r)$$

§ Equivalently,

 $freq(w) > freq(r) \Rightarrow w \neq p+r \text{ or } w \neq r+s$ 

§ Hypothesis:

$$w=p+r \text{ or } w=r+s \Rightarrow freq(w) < freq(r)$$

§ Equivalently,

$$freq(w) > freq(r) \Rightarrow w \neq p+r \text{ or } w \neq r+s$$

- S Problem
  - since hypothesis is only true in 83.56% of the cases, it would identify many correct attachments as incorrect

§ Hypothesis:

$$w=p+r \text{ or } w=r+s \Rightarrow freq(w) < freq(r)$$

§ Equivalently,

$$freq(w) > freq(r) \Rightarrow w \neq p+r \text{ or } w \neq r+s$$

- S Problem
  - since hypothesis is only true in 83.56% of the cases, it would identify many correct attachments as incorrect
- Solution: relax the hypothesis

$$freq(w) > c * freq(r) \Rightarrow w \neq p+r \text{ or } w \neq r+s$$

c=4 for prefixal attachments and 15 for suffixal attachments

## Our Unsupervised Word Segmentation Algorithm

#### 1. Morpheme induction

 Induce morphemes from a vocabulary V (a list of words taken from a large, unannotated corpus)

#### 2. Segmentation

Segment a word based on the induced morphemes

## Segmentation

- S Algorithm adopts a generate-and-remove strategy.
- S Given a word to be segmented
  - 1. Generate all possible segmentations of the word
  - 2. Apply a sequence of tests to remove candidate segmentations until only one candidate remains

#### Test 1

- S Remove any candidate segmentations  $m_1 m_2 \dots m_n$  that violate any of the following linguistic constraints
  - At least one of  $m_1, m_2, ..., m_n$  is a root
  - If  $m_i$  is a prefix, them  $m_{i+1}$  must be a root or a prefix
  - If  $m_i$  is a suffix, then  $m_{i-1}$  must be a root or a suffix

#### Test 2

S Retain only those candidate segmentations that have the smallest number of morphemes.

#### Test 3

- Score each of the remaining candidate segmentations by summing up the score of each morpheme, where
  - The score of a prefix/suffix is its affix frequency, multiplied by the length of the affix
  - The score of a root is the number of morphemes that attach to it, multiplied by the length of the root
- Select the highest-scoring candidate to be the final segmentation

## **Evaluation**

#### **Experimental Setup: Vocabulary Creation**

- Extract vocabulary from a corpus that contains one year of news articles taken from Prothom Alo
- 2. Pre-process each article by tokenizing it, removing punctuations and other unwanted character sequences
- ~143k distinct words in resulting vocabulary

#### **Experimental Setup: Test Set Preparation**

- Randomly choose 3000 words from V that are at least 3-character long
- Manually remove proper nouns and words with spelling mistakes
- 3. Ask two native speakers of Bengali to label the test cases
- Remove those test cases for which the two annotators produce non-identical segmentations
- § 2511 words in resulting test set

#### **Experimental Setup: Evaluation Metrics**

- S Exact accuracy
  - Percentage of test cases whose proposed segmentation is identical to the correct segmentation
- § F-score
  - Harmonic mean of recall and precision

$$\mathbf{Recall} = \frac{\mathbf{Number of correctly placed boundaries}}{\mathbf{Number of true morpheme boundaries}}$$

$$Precision = \frac{Number of correctly placed boundaries}{Number of proposed morpheme boundaries}$$

| System Variation               | Exact<br>Accuracy | Precision | Recall | F-score |
|--------------------------------|-------------------|-----------|--------|---------|
| Baseline (Linguistica)         | 37.08             | 58.25     | 65.15  | 61.48   |
| Basic induction                | 46.67             | 76.66     | 66.20  | 71.04   |
| Composite suffix detection     | 55.99             | 79.07     | 80.61  | 79.83   |
| Length dependent thresholds    | 58.38             | 81.97     | 79.75  | 80.85   |
| Incorrect attachment detection | 65.83             | 89.10     | 80.22  | 84.43   |

| System Variation               | Exact<br>Accuracy | Precision | Recall | F-score |
|--------------------------------|-------------------|-----------|--------|---------|
| Baseline (Linguistica)         | 37.08             | 58.25     | 65.15  | 61.48   |
| Basic induction                | 46.67             | 76.66     | 66.20  | 71.04   |
| Composite suffix detection     | 55.99             | 79.07     | 80.61  | 79.83   |
| Length dependent thresholds    | 58.38             | 81.97     | 79.75  | 80.85   |
| Incorrect attachment detection | 65.83             | 89.10     | 80.22  | 84.43   |

| System Variation               | Exact<br>Accuracy | Precision | Recall | F-score |
|--------------------------------|-------------------|-----------|--------|---------|
| Baseline (Linguistica)         | 37.08             | 58.25     | 65.15  | 61.48   |
| Basic induction                | 46.67             | 76.66     | 66.20  | 71.04   |
| Composite suffix detection     | 55.99             | 79.07     | 80.61  | 79.83   |
| Length dependent thresholds    | 58.38             | 81.97     | 79.75  | 80.85   |
| Incorrect attachment detection | 65.83             | 89.10     | 80.22  | 84.43   |

| System Variation               | Exact<br>Accuracy | Precision | Recall | F-score |
|--------------------------------|-------------------|-----------|--------|---------|
| Baseline (Linguistica)         | 37.08             | 58.25     | 65.15  | 61.48   |
| Basic induction                | 46.67             | 76.66     | 66.20  | 71.04   |
| Composite suffix detection     | 55.99             | 79.07     | 80.61  | 79.83   |
| Length dependent thresholds    | 58.38             | 81.97     | 79.75  | 80.85   |
| Incorrect attachment detection | 65.83             | 89.10     | 80.22  | 84.43   |

| System Variation               | Exact<br>Accuracy | Precision | Recall | F-score |
|--------------------------------|-------------------|-----------|--------|---------|
| Baseline (Linguistica)         | 37.08             | 58.25     | 65.15  | 61.48   |
| Basic induction                | 46.67             | 76.66     | 66.20  | 71.04   |
| Composite suffix detection     | 55.99             | 79.07     | 80.61  | 79.83   |
| Length dependent thresholds    | 58.38             | 81.97     | 79.75  | 80.85   |
| Incorrect attachment detection | 65.83             | 89.10     | 80.22  | 84.43   |

| System Variation               | Exact<br>Accuracy | Precision | Recall | F-score |
|--------------------------------|-------------------|-----------|--------|---------|
| Baseline (Linguistica)         | 37.08             | 58.25     | 65.15  | 61.48   |
| Basic induction                | 46.67             | 76.66     | 66.20  | 71.04   |
| Composite suffix detection     | 55.99             | 79.07     | 80.61  | 79.83   |
| Length dependent thresholds    | 58.38             | 81.97     | 79.75  | 80.85   |
| Incorrect attachment detection | 65.83             | 89.10     | 80.22  | 84.43   |

| System Variation               | Exact<br>Accuracy | Precision | Recall | F-score |
|--------------------------------|-------------------|-----------|--------|---------|
| Baseline (Linguistica)         | 37.08             | 58.25     | 65.15  | 61.48   |
| Basic induction                | 46.67             | 76.66     | 66.20  | 71.04   |
| Composite suffix detection     | 55.99             | 79.07     | 80.61  | 79.83   |
| Length dependent thresholds    | 58.38             | 81.97     | 79.75  | 80.85   |
| Incorrect attachment detection | 65.83             | 89.10     | 80.22  | 84.43   |

| System Variation               | Exact<br>Accuracy | Precision | Recall | F-score |
|--------------------------------|-------------------|-----------|--------|---------|
| Baseline (Linguistica)         | 37.08             | 58.25     | 65.15  | 61.48   |
| Basic induction                | 46.67             | 76.66     | 66.20  | 71.04   |
| Composite suffix detection     | 55.99             | 79.07     | 80.61  | 79.83   |
| Length dependent thresholds    | 58.38             | 81.97     | 79.75  | 80.85   |
| Incorrect attachment detection | 65.83             | 89.10     | 80.22  | 84.43   |

| System Variation               | Exact<br>Accuracy | Precision | Recall | F-score |
|--------------------------------|-------------------|-----------|--------|---------|
| Baseline (Linguistica)         | 37.08             | 58.25     | 65.15  | 61.48   |
| Basic induction                | 46.67             | 76.66     | 66.20  | 71.04   |
| Composite suffix detection     | 55.99             | 79.07     | 80.61  | 79.83   |
| Length dependent thresholds    | 58.38             | 81.97     | 79.75  | 80.85   |
| Incorrect attachment detection | 65.83             | 89.10     | 80.22  | 84.43   |

| System Variation               | Exact<br>Accuracy | Precision | Recall | F-score |
|--------------------------------|-------------------|-----------|--------|---------|
| Baseline (Linguistica)         | 37.08             | 58.25     | 65.15  | 61.48   |
| Basic induction                | 46.67             | 76.66     | 66.20  | 71.04   |
| Composite suffix detection     | 55.99             | 79.07     | 80.61  | 79.83   |
| Length dependent thresholds    | 58.38             | 81.97     | 79.75  | 80.85   |
| Incorrect attachment detection | 65.83             | 89.10     | 80.22  | 84.43   |

| System Variation               | Exact<br>Accuracy | Precision | Recall | F-score |
|--------------------------------|-------------------|-----------|--------|---------|
| Baseline (Linguistica)         | 37.08             | 58.25     | 65.15  | 61.48   |
| Basic induction                | 46.67             | 76.66     | 66.20  | 71.04   |
| Composite suffix detection     | 55.99             | 79.07     | 80.61  | 79.83   |
| Length dependent thresholds    | 58.38             | 81.97     | 79.75  | 80.85   |
| Incorrect attachment detection | 65.83             | 89.10     | 80.22  | 84.43   |

| System Variation               | Exact<br>Accuracy | Precision | Recall | F-score |
|--------------------------------|-------------------|-----------|--------|---------|
| Baseline (Linguistica)         | 37.08             | 58.25     | 65.15  | 61.48   |
| Basic induction                | 46.67             | 76.66     | 66.20  | 71.04   |
| Composite suffix detection     | 55.99             | 79.07     | 80.61  | 79.83   |
| Length dependent thresholds    | 58.38             | 81.97     | 79.75  | 80.85   |
| Incorrect attachment detection | 65.83             | 89.10     | 80.22  | 84.43   |

| System Variation               | Exact<br>Accuracy | Precision | Recall | F-score |
|--------------------------------|-------------------|-----------|--------|---------|
| Baseline (Linguistica)         | 37.08             | 58.25     | 65.15  | 61.48   |
| Basic induction                | 46.67             | 76.66     | 66.20  | 71.04   |
| Composite suffix detection     | 55.99             | 79.07     | 80.61  | 79.83   |
| Length dependent thresholds    | 58.38             | 81.97     | 79.75  | 80.85   |
| Incorrect attachment detection | 65.83             | 89.10     | 80.22  | 84.43   |

| System Variation               | Exact<br>Accuracy | Precision | Recall | F-score |
|--------------------------------|-------------------|-----------|--------|---------|
| Baseline (Linguistica)         | 37.08             | 58.25     | 65.15  | 61.48   |
| Basic induction                | 46.67             | 76.66     | 66.20  | 71.04   |
| Composite suffix detection     | 55.99             | 79.07     | 80.61  | 79.83   |
| Length dependent thresholds    | 58.38             | 81.97     | 79.75  | 80.85   |
| Incorrect attachment detection | 65.83             | 89.10     | 80.22  | 84.43   |

| System Variation               | Exact<br>Accuracy | Precision | Recall | F-score |
|--------------------------------|-------------------|-----------|--------|---------|
| Baseline (Linguistica)         | 37.08             | 58.25     | 65.15  | 61.48   |
| Basic induction                | 46.67             | 76.66     | 66.20  | 71.04   |
| Composite suffix detection     | 55.99             | 79.07     | 80.61  | 79.83   |
| Length dependent thresholds    | 58.38             | 81.97     | 79.75  | 80.85   |
| Incorrect attachment detection | 65.83             | 89.10     | 80.22  | 84.43   |

| System Variation               | Exact<br>Accuracy | Precision | Recall | F-score |
|--------------------------------|-------------------|-----------|--------|---------|
| Baseline (Linguistica)         | 37.08             | 58.25     | 65.15  | 61.48   |
| Basic induction                | 46.67             | 76.66     | 66.20  | 71.04   |
| Composite suffix detection     | 55.99             | 79.07     | 80.61  | 79.83   |
| Length dependent thresholds    | 58.38             | 81.97     | 79.75  | 80.85   |
| Incorrect attachment detection | 65.83             | 89.10     | 80.22  | 84.43   |

| System Variation               | Exact<br>Accuracy | Precision | Recall | F-score |
|--------------------------------|-------------------|-----------|--------|---------|
| Baseline (Linguistica)         | 37.08             | 58.25     | 65.15  | 61.48   |
| Basic induction                | 46.67             | 76.66     | 66.20  | 71.04   |
| Composite suffix detection     | 55.99             | 79.07     | 80.61  | 79.83   |
| Length dependent thresholds    | 58.38             | 81.97     | 79.75  | 80.85   |
| Incorrect attachment detection | 65.83             | 89.10     | 80.22  | 84.43   |

| System Variation               | Exact<br>Accuracy | Precision | Recall | F-score |
|--------------------------------|-------------------|-----------|--------|---------|
| Baseline (Linguistica)         | 37.08             | 58.25     | 65.15  | 61.48   |
| Basic induction                | 46.67             | 76.66     | 66.20  | 71.04   |
| Composite suffix detection     | 55.99             | 79.07     | 80.61  | 79.83   |
| Length dependent thresholds    | 58.38             | 81.97     | 79.75  | 80.85   |
| Incorrect attachment detection | 65.83             | 89.10     | 80.22  | 84.43   |

| System Variation               | Exact<br>Accuracy | Precision | Recall | F-score |
|--------------------------------|-------------------|-----------|--------|---------|
| Baseline (Linguistica)         | 37.08             | 58.25     | 65.15  | 61.48   |
| Basic induction                | 46.67             | 76.66     | 66.20  | 71.04   |
| Composite suffix detection     | 55.99             | 79.07     | 80.61  | 79.83   |
| Length dependent thresholds    | 58.38             | 81.97     | 79.75  | 80.85   |
| Incorrect attachment detection | 65.83             | 89.10     | 80.22  | 84.43   |

| System Variation               | Exact<br>Accuracy | Precision | Recall | F-score |
|--------------------------------|-------------------|-----------|--------|---------|
| Baseline (Linguistica)         | 37.08             | 58.25     | 65.15  | 61.48   |
| Basic induction                | 46.67             | 76.66     | 66.20  | 71.04   |
| Composite suffix detection     | 55.99             | 79.07     | 80.61  | 79.83   |
| Length dependent thresholds    | 58.38             | 81.97     | 79.75  | 80.85   |
| Incorrect attachment detection | 65.83             | 89.10     | 80.22  | 84.43   |

| System Variation               | Exact<br>Accuracy | Precision | Recall | F-score |
|--------------------------------|-------------------|-----------|--------|---------|
| Baseline (Linguistica)         | 37.08             | 58.25     | 65.15  | 61.48   |
| Basic induction                | 46.67             | 76.66     | 66.20  | 71.04   |
| Composite suffix detection     | 55.99             | 79.07     | 80.61  | 79.83   |
| Length dependent thresholds    | 58.38             | 81.97     | 79.75  | 80.85   |
| Incorrect attachment detection | 65.83             | 89.10     | 80.22  | 84.43   |

#### **Conclusions**

- S A new unsupervised algorithm for Bangla word segmentation
  - Outperforms Linguistica when evaluated on 2511 handsegmented words
  - Composite suffix detection and incorrect attachment detection contribute significantly to overall performance