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Morphological Analysis / Word Segmentation

§ Segment a word into morphemes (roots, prefixes, suffixes)

S English:
“unforgettable”
= “un” (Prefix) + “forget” (Root) + “able” (Suffix)

§ Bangla:
‘Tayfaserm (anAdhUnIKTAY)
= “an” (Prefix) + “@dhUnlk” (Root) + “TA” (Suffix) +
“r’ (Inflectional Suffix)
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Morphological Analysis: Two Major Approaches

S Knowledge-based approaches
» Rely on manually designed segmentation heuristics

§ Unsupervised approaches
» Induce morphemes from a large, unannotated corpus

» Successfully applied to many European languages such as
English, German, and Dutch (e.g., Goldsmith (2001),
Schone and Jurafsky (2001), Freitag (2005))

» Not so successful for agglutinative languages such as
Finnish and Turkish (see 2006 PASCAL Challenge on
Unsupervised Segmentation of Words into Morphemes)



Goal

Unsupervised morphological analysis for Bangla
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Goal

Unsupervised morphological analysis for Bangla

How difficult is morphological parsing of Bangla?
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Goal

Unsupervised morphological analysis for Bangla

How difficult is morphological parsing of Bangla?
§ Bangla is highly inflectional but not agglutinative
S More difficult than English

S Less difficult than Turkish and Finnish
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Our Unsupervised Word Segmentation Algorithm

1. Morpheme induction

» Induce morphemes from a vocabulary V (a list of words
taken from a large, unannotated corpus)

2. Segmentation
» Segment a word based on the induced morphemes
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Our Unsupervised Word Segmentation Algorithm

1. Morpheme induction

» Induce morphemes from a vocabulary V (a list of words
taken from a large, unannotated corpus)

2. Segmentation
» Segment a word based on the induced morphemes
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The Morpheme Induction Algorithm

S Basic morpheme induction method

§ Three extensions to the basic induction method
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The Morpheme Induction Algorithm

§ Basic morpheme induction method

§ Three extensions to the basic induction method
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Basic Prefix and Suffix Induction Method

S Motivated by Keshava and Pitler’'s (2006) algorithm

S Let A and B be two character sequences. Assume:
1. ABand AinV = B is a suffix
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Basic Prefix and Suffix Induction Method
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S Let A and B be two character sequences. Assume:
1. ABand AinV = B is a suffix
“singing” and “sing” = “ing” is a suffix
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Basic Prefix and Suffix Induction Method

S Motivated by Keshava and Pitler’'s (2006) algorithm

S Let A and B be two character sequences. Assume:
1. AB and AinV = B is a suffix
“singing” and “sing” = “ing” is a suffix
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Basic Prefix and Suffix Induction Method

S Motivated by Keshava and Pitler’'s (2006) algorithm

S Let A and B be two character sequences. Assume:
1. AB and AinV = B is a suffix
“singing” and “sing” = “ing” is a suffix
2. ABandBinV = Als a prefix
“preset” and “set” = “pre” is a prefix

21



Basic Prefix and Suffix Induction Method (Cont’)

Problem: Assumption does not always hold
» “diverge” and “diver’ areinV  “ge”is a suffix Wrong!
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Basic Prefix and Suffix Induction Method (Cont’)

Problem: Assumption does not always hold
» “diverge” and “diver’ areinV  “ge”is a suffix Wrong!
Many of the induced prefixes and suffixes are erroneous

Solution: score each induced affix and retain only those
whose scores are above a pre-defined threshold

» Score(a) = affix-frequency(a) * length(a)
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Affix Frequency

§ Number of distinct words In V to which an affix attaches
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Affix Frequency

§ Number of distinct words In V to which an affix attaches

S Affix frequency of “ge” = 2

S Affix frequency of “ing” = 3

divrer

gE

char

2ng

walk g

tell /
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Why Should the Score of an Affix Depend on its
Affix Frequency?

S The higher the affix frequency
The more words to which the affix attaches
The more likely the affix is correct
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Why Should the Score of an Affix Depend on its
Length?

§ Shorter affixes are more likely to be incorrect than longer
affixes (Goldsmith (2001))

» A higher score should be given to a longer affix

28



Top Scoring Affixes According to the Metric

Top-scoring affixes according to metric 1

Prefix List Suffix List

Prefix Score Suffix Score
bI (%) 1054 Er (¢:) 19634
a (@) 770 kE (&) 13456
p~rTI (2f9) 664 r(9) 12747
mha (72) 651 o (€) 8213
p~T (%) 640 I (%) 7872
SU (7) 636 Sh (7=) 6502
@ (=) 626 B (62) 6218
bIg~b (%) 580 dEr (9) 5874
bA (1) 544 TE ((9) 4296
sIk~FA (fm) 500 gUlo (%7s) 3440
gl (1) 496 rA () 3262
prl (#7) 486 £A (31) 2592
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Top Scoring Affixes According to the Metric

Top-scoring affixes according to metric 1

Pl‘Eij/fist Suffix List

Py{fix Sh\re Suffix Score
I (7) 1054 | Br (&) 19634
a (%) 770 \ | XE (&) 13456
p~rTI (2f9) 664 \[r@ 12747
mha (3727) 651 o (e€) 8213
p~T (%) 640 I (%) 7872
SU (7) 636 Sh (7=) 6502
@ (7=7) 626 E (¢2) 6218
bIs~b (%) 580 dEr (&79) 5874
DA (1) 544 TE () 4296
aTk~FA (fm) 500 /| gUlO (%) 3440
\gll (%) 496 / | rA () 3262
prl (7f) 186/ tA (57) 2592
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Top Scoring Affixes According to the Metric

Top-scoring affixes according to metric 1

Prefix List Suffix List

Prefix Score S{lfﬁx S(‘ﬂl’f\
BT (@) 1054 |/Er (@A) 19634\
a (%) 770 KE () 13456
p~rTI (2f9) 664 / r(9) 12747
mhA (72) 651 / o (e) 8213
p~r (%) 640 I (72 7872
SU () 636 sh (717) 6502

@ (7=7) 626 E (¢2) 6218
bIs~b (=) 580 | | dEr (79) 5874
DA () c44  \| TE () 4296
sIk~FL (T*FFT) 500 gUlO (=) 3440 /
gN (1) 496 | \tA (@) 3262 /
prI (<) 486 tﬁ\{ﬁf} 259/2/
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Top Scoring Affixes According to the Metric

Top-scoring affixes according to metric 1

Prefix List Suffix List

Prefix Score Suffix Score
bI (%) 1054 Er (¢:) 19634
a (@) 770 kE (&) 13456
p~rTI (2f9) 664 r(9) 12747
mha (72) 651 o (€) 8213
p~T (%) 640 I (%) 7872
SU (7) 636 Sh (7=) 6502
@ (=) 626 B (62) 6218
bIg~b (%) 580 dEr (9) 5874
bA (1) 544 TE ((9) 4296
sIk~FA (fm) 500 gUlo (%7s) 3440
gl (1) 496 rA () 3262
prl (#7) 486 £A (31) 2592
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Scoring an Affix

S We retain an affix in the induced list if and only if its score
exceeds the pre-defined threshold

» 60 for prefixes and 40 for suffixes
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The Morpheme Induction Algorithm

S Basic morpheme induction method
» Prefix and suffix induction
» Root induction

§ Three improvements to the basic induction method
» Employing length-dependent thresholds
» Detecting composite suffixes
» Detecting incorrect attachments

34



Basic Root Induction Method

§ Now, we have a list of induced prefixes and suffixes.

§ For each word w In V, check whether w is divisible based
on this affix list.
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Basic Root Induction Method

§ Now, we have a list of induced prefixes and suffixes.

§ For each word w In V, check whether w is divisible based
on this affix list.

» Ifw="r+s"or“p+r’, where p and s are an induced prefix
and suffix respectively and r is another word in the
vocabulary, then w is divisible and so w can'’t be a root.
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Basic Root Induction Method

§ Now, we have a list of induced prefixes and suffixes.

§ For each word w in V, check whether w is divisible based
on this affix list.
» Ifw="r+s"or“p+r’, where p and s are an induced prefix

and suffix respectively and r is another word in the
vocabulary, then w is divisible and so w can'’t be a root.

» If not, then we add w to the list of candidate roots.

37



The Morpheme Induction Algorithm

§ Basic morpheme induction method
» Prefix and suffix induction
» Root induction

§ Three extensions to the basic induction method
» Employing length-dependent thresholds
» Detecting composite suffixes
» Detecting incorrect attachments
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Employing Length-Dependent Thresholds

S Recall that we retain an induced affix in our list if and only
If its score exceeds some threshold

» 60 for prefixes and 40 for suffixes
» Threshold is independent of the length of an affix
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Employing Length-Dependent Thresholds

S Recall that we retain an induced affix in our list if and only
If its score exceeds some threshold

» 60 for prefixes and 40 for suffixes
» Threshold is independent of the length of an affix

S since shorter affixes are more likely to be erroneous, we
hypothesize that employing larger thresholds for shorter
affixes may yield better performance
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Employing Length-Dependent Thresholds

S Recall that we retain an induced affix in our list if and only
If its score exceeds some threshold

» 60 for prefixes and 40 for suffixes
» Threshold is independent of the length of an affix

S since shorter affixes are more likely to be erroneous, we
hypothesize that employing larger thresholds for shorter
affixes may yield better performance

» If affix length < 2, multiply threshold by (4 — affix length)
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Employing Length-Dependent Thresholds

S Recall that we retain an induced affix in our list if and only
If its score exceeds some threshold

» 60 for prefixes and 40 for suffixes
» Threshold is independent of the length of an affix

S since shorter affixes are more likely to be erroneous, we
hypothesize that employing larger thresholds for shorter
affixes may yield better performance

» If affix length < 2, multiply threshold by (4 — affix length)

» E.g., for candidate suffix “j” to remain in the list, it has to
attain a score of at least 40*(4-1) = 120.
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The Morpheme Induction Algorithm

S Basic morpheme induction method
» Prefix and suffix induction
» Root induction

§ Three extensions to the basic induction method
» Employing length-dependent thresholds
» Detecting composite suffixes
» Detecting incorrect attachments
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Detecting Composite Suffixes

S Composite suffix
» formed by concatenating two or more suffixes
(e.g-’ HerS” — Herﬂ + HSH ).
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S Composite suffix
» formed by concatenating two or more suffixes
(e.g-’ HerS” — Herﬂ + HSH ).

§ Many suffixes in the induced suffix list are composite
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Detecting Composite Suffixes

S Composite suffix
» formed by concatenating two or more suffixes
(e.g-’ HerS” — Herﬂ + HSH ).

§ Many suffixes in the induced suffix list are composite

S Need to remove composite suffixes from the list, because
their presence could lead to under-segmentation.

» E.g., “singers” should be segmented as “sing+er+s”. Without
composite suffix detection, it will be segmented as “sing+ers”
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Detecting Composite Suffixes is not Trivial

§ Simple concatenation of two suffixes does not always
produce a composite suffix.
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Detecting Composite Suffixes is not Trivial

§ Simple concatenation of two suffixes does not always
produce a composite suffix.
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Detecting Composite Suffixes is not Trivial

§ Simple concatenation of two suffixes does not always
produce a composite suffix.

» E.g., “en” and “t” are valid suffixes, but “ent” is not a
composite suffix
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Detecting Composite Suffixes is not Trivial

§ Simple concatenation of two suffixes does not always
produce a composite suffix.

» E.g., “en” and “t” are valid suffixes, but “ent” is not a
composite suffix

§ Same is true for Bangla
» “TE” 2T + “E”
» “EBr' #“E” + "r”
» “Tr’ 2T + 47
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How to Detect Composite Suffixes?

S Employ two criteria
» Suffix strength
» Word-level similarity
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Suffix Strength

§ Observation:
Let C and S be two suffixes.
If CS is a composite suffix formed from C and S then
affix freq (CS) < affix freq (C)
affix freq (CS) < affix freq (S)
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Affix frequency: Number
of distinct words to which

Suffix Strength an affix attaches

§ Observation:
Let C and S be two suffixes.
If CS is a composite suffix formed from C and S then
affix freq (CS) < affix freq (C)
affix freq (CS) < affix freq (S)
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Affix frequency: Number
of distinct words to which

Suffix Strength an affix attaches

§ Observation:

Let C and S be two suffixes.

If CS is a composite suffix formed from C and S then
affix freq (CS) < affix freq (C)
affix freq (CS) < affix freq (S)

E.g., “ments” is a composite suffix composed of “ment” + “s”
If we count the affix fregs of “ments”, “ment”, “s” in a large corpus,
affix freq (“ments”) < affix freq (“ment”)
affix freq (“ments”) < affix freq (“s”)
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Suffix Strength

§ Suffix strength alone can be used to determine that a suffix is
non-composite

Consider the Bangla suffix “Er”.
affix freq (“Er”) = 9817
affix freq (“E”) = 6218
affix freq (“r’) = 1247
So, “Er’ can’t be a composite suffix.
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Suffix Strength

§ Suffix strength alone can be used to determine that a suffix is
non-composite

Consider the Bangla suffix “Er”.
affix freq (“Er”) = 9817
affix freq (“E”) = 6218
affix freq (“r’) = 1247
So, “Er’ can’t be a composite suffix.

§ But suffix strength alone is not sufficient for determining that a
suffix iIs composite.

Consider the Bangla suffix “Ar”

affix freq (“Ar”) < affix freq (“A”) and affix freq (“r”’
But, “Ar” Is not a composite suffix.
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Suffix Strength

§ Suffix strength alone can be used to determine that a suffix is
non-composite

Consider the Bangla suffix “Er”.
affix freq (“Er”) = 9817
affix freq (“E”) = 6218
affix freq (“r’) = 1247
So, “Er’ can’t be a composite suffix.

§ But suffix strength alone is not sufficient for determining that a
suffix iIs composite.

Consider the Bangla suffix “Ar”

affix freq (“Ar”) < affix freq (“A”) and affix freq (“r”’

But, “Ar” is not a composite suffix. Need a second condition 59



Word-Level Similarity

§ Observation

» If a composite suffix (say “ers”) attaches to a word (say
“sing”), then most likely its first component suffix (“er”)
does.
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Word-Level Similarity

§ Observation
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“sing”), then most likely its first component suffix (“er”)
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» A composite suffix and its first component suffix should
be similar in terms of the words to which they attach
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Word-Level Similarity

§ Observation

» If a composite suffix (say “ers”) attaches to a word (say
“sing”), then most likely its first component suffix (“er”)
does.

A composite suffix and its first component suffix should
be similar in terms of the words to which they attach

» Formally, if AB is a composite suffix formed from A and B,
then Number of words to which both AB and A attach

Number of words to which AB attaches

should be large
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Word-Level Similarity

§ Observation

» If a composite suffix (say “ers”) attaches to a word (say
“sing”), then most likely its first component suffix (“er”)
does.

A composite suffix and its first component suffix should
be similar in terms of the words to which they attach

» Formally, if AB is d from A and B,
then mber of words to which both AB and A atta

ber of words to which AB attaches

should be large \
Word-level similarity
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Our Composite Suffix Detection Algorithm

§ Combines these two conditions to determine whether a
suffix Is composite

§ We posit suffix AB as composite if and only if

1.

the suffix strength condition is not violated:
affix freq(AB) < affix freq(A) and affix freq(AB) < affix freq(B)

the word-level similarity between A and AB is sufficiently
high (> 0.6)

64



The Morpheme Induction Algorithm

S Basic morpheme induction method
» Prefix and suffix induction
» Root induction

§ Three extensions to the basic induction method
» Employing length-dependent thresholds
» Detecting composite suffixes
» Detecting incorrect attachments
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A Motivating Example

S How should “candidate” be segmented?
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A Motivating Example

S How should “candidate” be segmented?
» “candidate” is a root word, so it should not be segmented

» However, given our affix induction algorithm, we would
erroneously segment it as “candid” + “ate”
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A Motivating Example

S How should “candidate” be segmented?
» “candidate” is a root word, so it should not be segmented

» However, given our affix induction algorithm, we would
erroneously segment it as “candid” + “ate”

d N

aword inV an induced suffix
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A Motivating Example

S How should “candidate” be segmented?
» “candidate” is a root word, so it should not be segmented

» However, given our affix induction algorithm, we would
erroneously segment it as “candid” + “ate”

d N

aword inV an induced suffix
§ Problem

» Failure to recognize that “candidate” is a root itself,
resulting in over-segmentation
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A Motivating Example

S How should “candidate” be segmented?
» “candidate” is a root word, so it should not be segmented

» However, given our affix induction algorithm, we would
erroneously segment it as “candid” + “ate”

aword inV an induced suffix
§ Problem

» Failure to recognize that “candidate” is a root itself,
resulting in over-segmentation

§ Goal

» To automatically detect that the attachment of the affix
“ate” to “candid” to form “candidate” is incorrect
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The Incorrect Attachment Detection Problem

§ "affectionate” = “affection” + “ate” correct

§ “candidate” = “candid” + “ate” Incorrect
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How to Detect Incorrect Attachments?

S A simple algorithm

§ Hypothesis
w=p+r or w=r+s = freq(w) < freq(r)
where freq(x) is the corpus frequency of word X
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How to Detect Incorrect Attachments?

S A simple algorithm

§ Hypothesis
w=p+r or w=r+s = freq(w) < freq(r)
where freq(x) is the corpus frequency of word X

§ It means that the inflectional or derivational form of a root
word occurs less frequently than the root word itself

74



How to Detect Incorrect Attachments?

S A simple algorithm

§ Hypothesis
w=p+r or w=r+s = freq(w) < freq(r)
where freq(x) is the corpus frequency of word X

§ It means that the inflectional or derivational form of a root
word occurs less frequently than the root word itself

S Some examples
» “reopen” =“re” + “open” = freq(reopen) < freqg(open)
» “opening” = “open” + “ing” = freq(opening) < freq(open)

» “unhealthy” = “un” + “healthy” = freqg(unhealthy) < freq(healthy)
75



To what extent does our hypothesis hold true?

w=p+r or w=r+s = freq(w) < freq(r)
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To what extent does our hypothesis hold true?

w=p+r or w=r+s = freq(w) < freq(r)

S When evaluated on 286 words randomly chosen from V, the
hypothesis is true in 83.56% of the cases.
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Applying the Hypothesis to Detect Incorrect

Attachments

S Hypothesis:

w=p+r or w=r+s = freq(w) < freq(r)
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Applying the Hypothesis to Detect Incorrect

Attachments

S Hypothesis:

w=p+r or w=r+s = freq(w) < freq(r)

S Equivalently,

freq(w) > freq(r) = w # p+r or w £ r+s
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Applying the Hypothesis to Detect Incorrect
Attachments

§ Hypothesis: w=p+r or w=r+s = freq(w) < freq(r)
S Equivalently, freq(w) > freq(r) = w # p+r or w  r+s
S Problem

» since hypothesis is only true in 83.56% of the cases, it
would identify many correct attachments as incorrect
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Applying the Hypothesis to Detect Incorrect
Attachments

§ Hypothesis: w=p+r or w=r+s = freq(w) < freq(r)
S Equivalently, freq(w) > freq(r) = w # p+r or w  r+s
S Problem

» since hypothesis is only true in 83.56% of the cases, it
would identify many correct attachments as incorrect

S Solution: relax the hypothesis

freq(w) > c * freq(r) = w # p+r or w # r+s

» c=4 for prefixal attachments and 15 for suffixal attachments
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Our Unsupervised Word Segmentation Algorithm

1. Morpheme induction

» Induce morphemes from a vocabulary V (a list of words
taken from a large, unannotated corpus)

2. Segmentation
» Segment a word based on the induced morphemes
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Segmentation

§ Algorithm adopts a generate-and-remove strategy.

§ Given a word to be segmented
1. Generate all possible segmentations of the word

2. Apply a sequence of tests to remove candidate
segmentations until only one candidate remains

83



Test 1

§ Remove any candidate segmentations m;m, ... m_ that
violate any of the following linguistic constraints

» At least one of m;, m,, ..., m_Is a root
» If m; is a prefix, them m;,; must be a root or a prefix
» If m; is a suffix, then m,_; must be a root or a suffix
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Test 2

S Retain only those candidate segmentations that have the
smallest number of morphemes.
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Test 3

§ Score each of the remaining candidate segmentations
by summing up the score of each morpheme, where

» The score of a prefix/suffix is its affix frequency, multiplied
by the length of the affix

» The score of a root is the number of morphemes that
attach to it, multiplied by the length of the root

§ Select the highest-scoring candidate to be the final
segmentation
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Evaluation
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Experimental Setup: Vocabulary Creation

1.

Extract vocabulary from a corpus that contains one year
of news articles taken from Prothom Alo

Pre-process each article by tokenizing it, removing
punctuations and other unwanted character sequences

~143k distinct words In resulting vocabulary
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Experimental Setup: Test Set Preparation

1.

Randomly choose 3000 words from V that are at least
3-character long

Manually remove proper nouns and words with spelling
mistakes

Ask two native speakers of Bengali to label the test cases

Remove those test cases for which the two annotators
produce non-identical segmentations

2511 words in resulting test set
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Experimental Setup: Evaluation Metrics

§ Exact accuracy

» Percentage of test cases whose proposed segmentation is
identical to the correct segmentation

S F-score
» Harmonic mean of recall and precision

_ Number of correctly placed boundaries
Recall= :
Number of true morpheme boundaries

Number of correctly placed boundaries
Number of proposed morpheme boundaries

Precision=
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Results

System Variation Exact Precision |Recall F-score
Accuracy

Baseline (Linguistica) 37.08 58.25 65.15 61.48
Basic induction 46.67 76.66 66.20 71.04
Composite suffix detection |55.99 79.07 80.61 79.83
Length dependent 58.38 81.97 79.75 80.85
thresholds

Incorrect attachment 65.83 89.10 80.22 84.43

detection
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Conclusions

S A new unsupervised algorithm for Bangla word
segmentation

» Outperforms Linguistica when evaluated on 2511 hand-
segmented words

» Composite suffix detection and incorrect attachment
detection contribute significantly to overall performance
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