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Morphological Analysis / Word Segmentation

§ Segment a word into morphemes (roots, prefixes, suffixes)

§ English:
“unforgettable”

= “un” (Prefix) + “forget” (Root) + “able” (Suffix)

§ Bangla:
“����������	” (anAdhUnIkTAr) 

= “an” (Prefix) + “@dhUnIk” (Root) + “TA” (Suffix) + 
“r” (Inflectional Suffix)
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Why Morphological Analysis?

§ Stemming
§ POS tagging
§ High-level NLP applications (e.g., text classification)



September1999
5

Why Morphological Analysis?

§ Stemming
§ POS tagging
§ High-level NLP applications (e.g., text classification)



September1999
6

Morphological Analysis: Two Major Approaches

§ Knowledge-based approaches
� Rely on manually designed segmentation heuristics



September1999
7

Morphological Analysis: Two Major Approaches

§ Knowledge-based approaches
� Rely on manually designed segmentation heuristics

§ Unsupervised approaches
� Induce morphemes from a large, unannotated corpus



September1999
8

Morphological Analysis: Two Major Approaches

§ Knowledge-based approaches
� Rely on manually designed segmentation heuristics

§ Unsupervised approaches
� Induce morphemes from a large, unannotated corpus
� Successfully applied to many European languages such as 

English, German, and Dutch (e.g., Goldsmith (2001), 
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Morphological Analysis: Two Major Approaches

§ Knowledge-based approaches
� Rely on manually designed segmentation heuristics

§ Unsupervised approaches
� Induce morphemes from a large, unannotated corpus
� Successfully applied to many European languages such as 

English, German, and Dutch (e.g., Goldsmith (2001), 
Schone and Jurafsky (2001), Freitag (2005))

� Not so successful for agglutinative languages such as 
Finnish and Turkish (see 2006 PASCAL Challenge on 
Unsupervised Segmentation of Words into Morphemes)
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Goal

Unsupervised morphological analysis for Bangla
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Goal

Unsupervised morphological analysis for Bangla

How difficult is morphological parsing of Bangla?
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Goal

Unsupervised morphological analysis for Bangla

How difficult is morphological parsing of Bangla?
§ Bangla is highly inflectional but not agglutinative
§ More difficult than English
§ Less difficult than Turkish and Finnish
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Our Unsupervised Word Segmentation Algorithm

1. Morpheme induction
� Induce morphemes from a vocabulary V (a list of words 

taken from a large, unannotated corpus)

2. Segmentation
� Segment a word based on the induced morphemes
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Our Unsupervised Word Segmentation Algorithm

1. Morpheme induction
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Basic Prefix and Suffix Induction Method

§ Motivated by Keshava and Pitler’s (2006) algorithm

§ Let A and B be two character sequences. Assume:
1. AB and A in V ⇒ B is a suffix
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Basic Prefix and Suffix Induction Method

§ Motivated by Keshava and Pitler’s (2006) algorithm

§ Let A and B be two character sequences. Assume:
1. AB and A in V ⇒ B is a suffix

n “singing” and “sing” ⇒ “ing” is a suffix
2. AB and B in V ⇒ A is a prefix
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Basic Prefix and Suffix Induction Method

§ Motivated by Keshava and Pitler’s (2006) algorithm

§ Let A and B be two character sequences. Assume:
1. AB and A in V ⇒ B is a suffix

n “singing” and “sing” ⇒ “ing” is a suffix
2. AB and B in V ⇒ A is a prefix

n “preset” and “set” ⇒ “pre” is a prefix
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Basic Prefix and Suffix Induction Method (Cont’)

Problem: Assumption does not always hold
� “diverge” and “diver” are in V à “ge” is a suffix     Wrong!
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Basic Prefix and Suffix Induction Method (Cont’)

Problem: Assumption does not always hold
� “diverge” and “diver” are in V à “ge” is a suffix     Wrong!
à Many of the induced prefixes and suffixes are erroneous

Solution: score each induced affix and retain only those 
whose scores are above a pre-defined threshold
� Score(a) = affix-frequency(a) * length(a)
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Affix Frequency

§ Number of distinct words in V to which an affix attaches
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Affix Frequency

§ Number of distinct words in V to which an affix attaches

§ Affix frequency of “ge” = 2

§ Affix frequency of “ing” = 3
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Why Should the Score of an Affix Depend on its 
Affix Frequency?

§ The higher the affix frequency
à The more words to which the affix attaches
à The more likely the affix is correct
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§ Shorter affixes are more likely to be incorrect than longer 
affixes (Goldsmith (2001)) 
� A higher score should be given to a longer affix

Why Should the Score of an Affix Depend on its 
Length?
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Top Scoring Affixes According to the Metric
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Top Scoring Affixes According to the Metric
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Scoring an Affix

§ We retain an affix in the induced list if and only if its score 
exceeds the pre-defined threshold
� 60 for prefixes and 40 for suffixes
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The Morpheme Induction Algorithm

§ Basic morpheme induction method
� Prefix and suffix induction
� Root induction

§ Three improvements to the basic induction method
� Employing length-dependent thresholds
� Detecting composite suffixes
� Detecting incorrect attachments
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Basic Root Induction Method

§ Now, we have a list of induced prefixes and suffixes.

§ For each word w in V, check whether w is divisible based 
on this affix list.
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Basic Root Induction Method

§ Now, we have a list of induced prefixes and suffixes.

§ For each word w in V, check whether w is divisible based 
on this affix list.
� If w = “r + s” or “p + r”, where p and s are an induced prefix 

and suffix respectively and r is another word in the 
vocabulary, then w is divisible and so w can’t be a root. 



September1999
37

Basic Root Induction Method

§ Now, we have a list of induced prefixes and suffixes.

§ For each word w in V, check whether w is divisible based 
on this affix list.
� If w = “r + s” or “p + r”, where p and s are an induced prefix 

and suffix respectively and r is another word in the 
vocabulary, then w is divisible and so w can’t be a root. 

� If not, then we add w to the list of candidate roots.
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The Morpheme Induction Algorithm

§ Basic morpheme induction method
� Prefix and suffix induction
� Root induction

§ Three extensions to the basic induction method
� Employing length-dependent thresholds
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� Detecting incorrect attachments
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Employing Length-Dependent Thresholds

§ Recall that we retain an induced affix in our list if and only 
if its score exceeds some threshold 
� 60 for prefixes and 40 for suffixes
� Threshold is independent of the length of an affix
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Employing Length-Dependent Thresholds

§ Recall that we retain an induced affix in our list if and only 
if its score exceeds some threshold
� 60 for prefixes and 40 for suffixes
� Threshold is independent of the length of an affix

§ since shorter affixes are more likely to be erroneous, we 
hypothesize that employing larger thresholds for shorter 
affixes may yield better performance
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Employing Length-Dependent Thresholds

§ Recall that we retain an induced affix in our list if and only 
if its score exceeds some threshold
� 60 for prefixes and 40 for suffixes
� Threshold is independent of the length of an affix

§ since shorter affixes are more likely to be erroneous, we 
hypothesize that employing larger thresholds for shorter 
affixes may yield better performance
� If affix length < 2, multiply threshold by (4 – affix length)
� E.g., for candidate suffix “j” to remain in the list, it has to 

attain a score of at least 40*(4-1) = 120.
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The Morpheme Induction Algorithm

§ Basic morpheme induction method
� Prefix and suffix induction
� Root induction

§ Three extensions to the basic induction method
� Employing length-dependent thresholds
� Detecting composite suffixes
� Detecting incorrect attachments
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Detecting Composite Suffixes

§ Composite suffix
� formed by concatenating two or more suffixes

(e.g., “ers” = “er” + “s” ).
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Detecting Composite Suffixes

§ Composite suffix
� formed by concatenating two or more suffixes

(e.g., “ers” = “er” + “s” ).

§ Many suffixes in the induced suffix list are composite

§ Need to remove composite suffixes from the list, because 
their presence could lead to under-segmentation. 
� E.g., “singers” should be segmented as “sing+er+s”. Without 

composite suffix detection, it will be segmented as “sing+ers”
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Detecting Composite Suffixes is not Trivial

§ Simple concatenation of two suffixes does not always 
produce a composite suffix.
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§ Simple concatenation of two suffixes does not always 
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composite suffix
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Detecting Composite Suffixes is not Trivial

§ Simple concatenation of two suffixes does not always 
produce a composite suffix.
� E.g., “en” and “t” are valid suffixes, but “ent” is not a 

composite suffix

§ Same is true for Bangla
� “TE” ≠ “T” + “E”
� “Er” ≠ “E” + “r”
� “Tr” ≠ “T” + “r”
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How to Detect Composite Suffixes?

§ Employ two criteria
� Suffix strength
� Word-level similarity
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Suffix Strength

§ Observation:
Let C and S be two suffixes.
If CS is a composite suffix formed from C and S then 

affix freq (CS) < affix freq (C)
affix freq (CS) < affix freq (S)
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Suffix Strength

§ Observation:
Let C and S be two suffixes.
If CS is a composite suffix formed from C and S then 

affix freq (CS) < affix freq (C)
affix freq (CS) < affix freq (S)

Affix frequency: Number 
of distinct words to which 
an affix attaches
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Suffix Strength

§ Observation:
Let C and S be two suffixes.
If CS is a composite suffix formed from C and S then 

affix freq (CS) < affix freq (C)
affix freq (CS) < affix freq (S)

E.g., “ments” is a composite suffix composed of  “ment” + “s”
If we count the affix freqs of “ments”, “ment”, “s” in a large corpus,
affix freq (“ments”) < affix freq (“ment”)
affix freq (“ments”) < affix freq (“s”)

Affix frequency: Number 
of distinct words to which 
an affix attaches
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Suffix Strength

§ Suffix strength alone can be used to determine that a suffix is 
non-composite
Consider the Bangla suffix “Er”.

affix freq (“Er”) = 9817
affix freq (“E”) = 6218
affix freq (“r”) = 1247
So, “Er” can’t be a composite suffix.
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Suffix Strength

§ Suffix strength alone can be used to determine that a suffix is 
non-composite
Consider the Bangla suffix “Er”.

affix freq (“Er”) = 9817
affix freq (“E”) = 6218
affix freq (“r”) = 1247
So, “Er” can’t be a composite suffix.

§ But suffix strength alone is not sufficient for determining that a 
suffix is composite.

Consider the Bangla suffix “Ar”

affix freq (“Ar”) < affix freq (“A”) and affix freq (“r”)
But, “Ar” is not a composite suffix.
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Suffix Strength

§ Suffix strength alone can be used to determine that a suffix is 
non-composite
Consider the Bangla suffix “Er”.

affix freq (“Er”) = 9817
affix freq (“E”) = 6218
affix freq (“r”) = 1247
So, “Er” can’t be a composite suffix.

§ But suffix strength alone is not sufficient for determining that a 
suffix is composite.

Consider the Bangla suffix “Ar”

affix freq (“Ar”) < affix freq (“A”) and affix freq (“r”)
But, “Ar” is not a composite suffix. Need a second condition
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Word-Level Similarity

§ Observation
� If a composite suffix (say “ers”) attaches to a word (say 

“sing”), then most likely its first component suffix (“er”) 
does.
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Word-Level Similarity

§ Observation
� If a composite suffix (say “ers”) attaches to a word (say 

“sing”), then most likely its first component suffix (“er”) 
does.
n A composite suffix and its first component suffix should 

be similar in terms of the words to which they attach

� Formally, if AB is a composite suffix formed from A and B,
then Number of words to which both AB and A attach

Number of words to which AB attaches

should be large
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Word-Level Similarity

§ Observation
� If a composite suffix (say “ers”) attaches to a word (say 

“sing”), then most likely its first component suffix (“er”) 
does.
n A composite suffix and its first component suffix should 

be similar in terms of the words to which they attach

� Formally, if AB is a composite suffix formed from A and B,
then Number of words to which both AB and A attach

Number of words to which AB attaches

should be large

Word-level similarity
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Our Composite Suffix Detection Algorithm

§ Combines these two conditions to determine whether a 
suffix is composite

§ We posit suffix AB as composite if and only if 
1. the suffix strength condition is not violated:

affix freq(AB) < affix freq(A) and affix freq(AB) < affix freq(B)
2. the word-level similarity between A and AB is sufficiently 

high (> 0.6)
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The Morpheme Induction Algorithm

§ Basic morpheme induction method
� Prefix and suffix induction
� Root induction

§ Three extensions to the basic induction method
� Employing length-dependent thresholds
� Detecting composite suffixes
� Detecting incorrect attachments
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A Motivating Example

§ How should “candidate” be segmented?
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erroneously segment it as “candid” + “ate”
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A Motivating Example

§ How should “candidate” be segmented?
� “candidate” is a root word, so it should not be segmented
� However, given our affix induction algorithm, we would 

erroneously segment it as “candid” + “ate”

a word in V an induced suffix
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A Motivating Example

§ How should “candidate” be segmented?
� “candidate” is a root word, so it should not be segmented
� However, given our affix induction algorithm, we would 

erroneously segment it as “candid” + “ate”

§ Problem
� Failure to recognize that “candidate” is a root itself, 

resulting in over-segmentation

a word in V an induced suffix
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A Motivating Example

§ How should “candidate” be segmented?
� “candidate” is a root word, so it should not be segmented
� However, given our affix induction algorithm, we would 

erroneously segment it as “candid” + “ate”

§ Problem
� Failure to recognize that “candidate” is a root itself, 

resulting in over-segmentation

§ Goal
� To automatically detect that the attachment of the affix 

“ate” to “candid” to form “candidate” is incorrect

a word in V an induced suffix
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The Incorrect Attachment Detection Problem

§ ”affectionate” = “affection” + “ate” correct

§ “candidate” = “candid” + “ate” incorrect
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How to Detect Incorrect Attachments?

§ A simple algorithm

§ Hypothesis

w=p+r or w=r+s ⇒ freq(w) < freq(r)        
where freq(x) is the corpus frequency of word x
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§ Hypothesis
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where freq(x) is the corpus frequency of word x

§ It means that the inflectional or derivational form of a root 
word occurs less frequently than the root word itself
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How to Detect Incorrect Attachments?

§ A simple algorithm

§ Hypothesis

w=p+r or w=r+s ⇒ freq(w) < freq(r)        
where freq(x) is the corpus frequency of word x

§ It means that the inflectional or derivational form of a root 
word occurs less frequently than the root word itself

§ Some examples
� “reopen” = “re” + “open” ⇒ freq(reopen) < freq(open)
� “opening” = “open” + “ing” ⇒ freq(opening) < freq(open)
� “unhealthy” = “un” + “healthy” ⇒ freq(unhealthy) < freq(healthy)
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To what extent does our hypothesis hold true?

w=p+r or w=r+s ⇒ freq(w) < freq(r)
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To what extent does our hypothesis hold true?

§ When evaluated on 286 words randomly chosen from V, the 
hypothesis is true in 83.56% of the cases.

w=p+r or w=r+s ⇒ freq(w) < freq(r)
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Applying the Hypothesis to Detect Incorrect 
Attachments

§ Hypothesis: w=p+r or w=r+s ⇒ freq(w) < freq(r)
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Applying the Hypothesis to Detect Incorrect 
Attachments

§ Hypothesis:

§ Equivalently,

w=p+r or w=r+s ⇒ freq(w) < freq(r)

freq(w) > freq(r) ⇒ w ≠≠≠≠ p+r or w ≠≠≠≠ r+s
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Applying the Hypothesis to Detect Incorrect 
Attachments

§ Hypothesis:

§ Equivalently,

§ Problem
� since hypothesis is only true in 83.56% of the cases, it 

would identify many correct attachments as incorrect

w=p+r or w=r+s ⇒ freq(w) < freq(r)

freq(w) > freq(r) ⇒ w ≠≠≠≠ p+r or w ≠≠≠≠ r+s
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Applying the Hypothesis to Detect Incorrect 
Attachments

§ Hypothesis:

§ Equivalently,

§ Problem
� since hypothesis is only true in 83.56% of the cases, it 

would identify many correct attachments as incorrect

§ Solution: relax the hypothesis

� c=4 for prefixal attachments and 15 for suffixal attachments

w=p+r or w=r+s ⇒ freq(w) < freq(r)

freq(w) > freq(r) ⇒ w ≠≠≠≠ p+r or w ≠≠≠≠ r+s

freq(w) > c * freq(r) ⇒ w ≠≠≠≠ p+r or w ≠≠≠≠ r+s



September1999
82

Our Unsupervised Word Segmentation Algorithm

1. Morpheme induction
� Induce morphemes from a vocabulary V (a list of words 

taken from a large, unannotated corpus)

2. Segmentation
� Segment a word based on the induced morphemes
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Segmentation

§ Algorithm adopts a generate-and-remove strategy.

§ Given a word to be segmented
1. Generate all possible segmentations of the word
2. Apply a sequence of tests to remove candidate 

segmentations until only one candidate remains
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Test 1

§ Remove any candidate segmentations m1m2 … mn that 
violate any of the following linguistic constraints
� At least one of m1, m2, …, mn is a root
� If mi is a prefix, them mi+1 must be a root or a prefix
� If mi is a suffix, then mi-1 must be a root or a suffix
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Test 2

§ Retain only those candidate segmentations that have the 
smallest number of morphemes.
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Test 3

§ Score each of the remaining candidate segmentations 
by summing up the score of each morpheme, where
� The score of a prefix/suffix is its affix frequency, multiplied 

by the length of the affix
� The score of a root is the number of morphemes that 

attach to it, multiplied by the length of the root

§ Select the highest-scoring candidate to be the final 
segmentation
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Evaluation
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Experimental Setup: Vocabulary Creation

1. Extract vocabulary from a corpus that contains one year 
of news articles taken from Prothom Alo

2. Pre-process each article by tokenizing it, removing 
punctuations and other unwanted character sequences

§ ~143k distinct words in resulting vocabulary
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Experimental Setup: Test Set Preparation

1. Randomly choose 3000 words from V that are at least         
3-character long

2. Manually remove proper nouns and words with spelling 
mistakes

3. Ask two native speakers of Bengali to label the test cases
4. Remove those test cases for which the two annotators 

produce non-identical segmentations

§ 2511 words in resulting test set
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Experimental Setup: Evaluation Metrics

§ Exact accuracy
� Percentage of test cases whose proposed segmentation is 

identical to the correct segmentation

§ F-score
� Harmonic mean of recall and precision

Number of true morpheme boundaries
Number of correctly placed boundaries

Number of correctly placed boundaries
Number of proposed morpheme boundaries

Recall =

Precision=
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Results

84.4380.2289.1065.83Incorrect attachment 
detection

80.8579.7581.9758.38Length dependent 
thresholds

79.8380.6179.0755.99Composite suffix detection

71.0466.2076.6646.67Basic induction

61.4865.1558.2537.08Baseline (Linguistica)

F-scoreRecallPrecisionExact 
Accuracy

System Variation
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Conclusions

§ A new unsupervised algorithm for Bangla word 
segmentation

� Outperforms Linguistica when evaluated on 2511 hand-
segmented words

� Composite suffix detection and incorrect attachment 
detection contribute significantly to overall performance 


