
Linking Source Code to

Untangled Change Intents

Xiaoyu Liu1 LiGuo Huang1 Chuanyi Li1,2 Vincent Ng3

1 Dept. of Computer Science and Engineering, Southern Methodist University

2 State Key Laboratory for Novel Software Technology, Nanjing University

3 Human Language Technology Research Institute, University of Texas at Dallas

09/06/2018 @SMU-CSE

Motivating ExampleMotivating ExampleMotivating ExampleMotivating Example

09/06/2018 @SMU-CSE

read relevant issue report

identify link

Key ChallengesKey ChallengesKey ChallengesKey Challenges

Change intents are tangled together in commit message

Manually link changed source code to change intents take lots of
human efforts

09/06/2018 @SMU-CSE

Key ChallengesKey ChallengesKey ChallengesKey Challenges

Change intents are tangled together in commit message

• Solution: Untangle change intents

Manually link changed source code to change intents take lots of
human efforts

• Solution: An automated approach

09/06/2018 @SMU-CSE

Existing Software Artifacts Linking ApproachesExisting Software Artifacts Linking ApproachesExisting Software Artifacts Linking ApproachesExisting Software Artifacts Linking Approaches

�Manual approaches

�Problem: Time-consuming, labor-intensive, and requires a great deal of

experience

�Information Retrieval (IR)-based approaches

�Use a IR-based model: measures similarity between changed source

code and untangled change intent

�Problem: Changed entities extracted from source code could be very

different from what is described in commit messages and other related

software documents

09/06/2018 @SMU-CSE

GoalGoalGoalGoal

Propose approaches to address the task of linking changed source
code to untangled change intent at the sentence level

09/06/2018 @SMU-CSE

Our ApproachesOur ApproachesOur ApproachesOur Approaches

AutoCILink-P

• Automatically identify links by using manually defined patterns

AutoCILink-ML

• Automatically identify links by applying supervised learning

09/06/2018 @SMU-CSE

PatternPatternPatternPattern----based Link Identification System (AutoCILinkbased Link Identification System (AutoCILinkbased Link Identification System (AutoCILinkbased Link Identification System (AutoCILink----P)P)P)P)

09/06/2018 @SMU-CSE

Text

Preprocessing

Link identification using

regular expression

Link identification using

regular expression

Link identification us

vocabulary similarity

Link identification us

vocabulary similarity

1 2 3

Issue 13: quick fix. # moved the

declaration of StringBuilder inside

toString() method. # added missing

javadoc to provide long startTime

instance variable

• Issue 13: quick fix.

• # moved the declaration of StringBuilder

inside toString() method.

• # added missing javadoc to provide long

startTime instance variable

1. Untangling change intents

If no

link

PatternPatternPatternPattern----based Link Identification System (AutoCILinkbased Link Identification System (AutoCILinkbased Link Identification System (AutoCILinkbased Link Identification System (AutoCILink----P)P)P)P)

09/06/2018 @SMU-CSE

…

2. Enriched untangled change intents

Text

Preprocessing

Link identification using

regular expression

Link identification using

regular expression

Link identification us

vocabulary similarity

Link identification us

vocabulary similarity

1 2 3

If no

link

PatternPatternPatternPattern----based Link Identification System (AutoCILinkbased Link Identification System (AutoCILinkbased Link Identification System (AutoCILinkbased Link Identification System (AutoCILink----P)P)P)P)

09/06/2018 @SMU-CSE 10

3. Extracting terms from enriched change intents and changed entities

from changed source code

Text

Preprocessing

Link identification using

regular expression

Link identification using

regular expression
Link identification us

vocabulary similarity

Link identification us

vocabulary similarity

1 2 3

If no

link

Terms: “declaration”,

“string”, “builders”, ...

Changed entities:

“event”,“handler”,“map”,

“simulation”,“type”,“job”,…

“# moved the declaration

of StringBuilder inside

toString() method.”

PatternPatternPatternPattern----based Link Identification System (AutoCILinkbased Link Identification System (AutoCILinkbased Link Identification System (AutoCILinkbased Link Identification System (AutoCILink----P)P)P)P)

09/06/2018 @SMU-CSE 11

Text

Preprocessing

Link identification using

regular expression

Link identification using

regular expression

Link identification using

vocabulary similarity

Link identification using

vocabulary similarity

2 3

<verb>: collected from change types

(e.g., move)

<entity>: noun words in changed sourc

code identifiers, comments or string

literals (e.g., builder)

If no

link

Generating regular expressions

PatternPatternPatternPattern----based Link Identification System (AutoCILinkbased Link Identification System (AutoCILinkbased Link Identification System (AutoCILinkbased Link Identification System (AutoCILink----P)P)P)P)

09/06/2018 @SMU-CSE 12

Text

Preprocessing

Link identification using

regular expression

Link identification using

regular expression

Link identification using

vocabulary similarity

Link identification using

vocabulary similarity

2 3

“moved the declaration of stringbuilde

inside toString() method”

^.*\s*move.*?builder.*

If no

link

Generating regular expressions

PatternPatternPatternPattern----based Link Identification System (AutoCILinkbased Link Identification System (AutoCILinkbased Link Identification System (AutoCILinkbased Link Identification System (AutoCILink----P)P)P)P)

09/06/2018 @SMU-CSE 13

Text

Preprocessing

Link identification using

regular expression

Link identification using

regular expression

Link identification using

vocabulary similarity

Link identification using

vocabulary similarity

32

If no

link

Vocabulary similarity between enriched untangled change intent terms

and changed source code entities

AutoCILinkAutoCILinkAutoCILinkAutoCILink----PPPP’’’’s Key Weaknesss Key Weaknesss Key Weaknesss Key Weakness

Regular expressions are not always precise

09/06/2018 @SMU-CSE 14

AutoCILinkAutoCILinkAutoCILinkAutoCILink----PPPP’’’’s Key Weaknesss Key Weaknesss Key Weaknesss Key Weakness

Impreciseness of regular expressions

• Solution: employs a learning-based link classification system to weigh
the importance of matched regular expressions

09/06/2018 @SMU-CSE 15

• Create training instances for each changed

source code and enriched untangled change

intent pair in the training dataset.

• Each instance annotated as linked or not linked

depending on whether there is a link

• Each instance is represented using 6 features

Supervised learningSupervised learningSupervised learningSupervised learning----based link classification system (AutoCILinkbased link classification system (AutoCILinkbased link classification system (AutoCILinkbased link classification system (AutoCILink----MMMMLLLL))))

09/06/2018 @SMU-CSE 16

Create Training

Instances

Train

Link Classifier

Train

Link Classifier

Classify Linked or

Not-linked in Test

Set

Classify Linked or

Not-linked in Test

Set

2

3

1

FeaturesFeaturesFeaturesFeatures

Type 1: Regular Expression Features encode the presence or absence of the
regular expression in the training set

Type 2-4: Three types of Vocabulary Features

09/06/2018 @SMU-CSE 17

Three Types of Vocabulary FeaturesThree Types of Vocabulary FeaturesThree Types of Vocabulary FeaturesThree Types of Vocabulary Features

09/06/2018 @SMU-CSE 18

Type 2: Vocabulary Pair Features

Type 3: Vocabulary Similarity

Features

Type 4: Term Unmatched Features

“Implementation of

jobs for simulation

process engine”

(process, job)

Three Types of Vocabulary FeaturesThree Types of Vocabulary FeaturesThree Types of Vocabulary FeaturesThree Types of Vocabulary Features

09/06/2018 @SMU-CSE 19

Type 2: Vocabulary Pair Features

Type 3: Vocabulary Similarity

Features

Type 4: Term Unmatched Features

Encode the vocabulary similarity

scores between an enriched

untangled change intent and a

changed source code

Three Types of Vocabulary FeaturesThree Types of Vocabulary FeaturesThree Types of Vocabulary FeaturesThree Types of Vocabulary Features

09/06/2018 @SMU-CSE 20

Type 2: Vocabulary Pair Features

Type 3: Vocabulary Similarity

Features

Type 4: Term Unmatched Features
Entities: “job”,“notif”,“time”,

“event”,“executor”,“handle”,…

Terms:“perform”,“increas”,“max”,“wait”,“tim

“job”,“executor”

3 out of 7 (42.9%) matched, so the percentage of no

terms unmatched in changed entities (1-42.9%=57.

falls in the range of [50%,60%)

FeaturesFeaturesFeaturesFeatures

Type 5: Code Import Features encode the percentage of terms unmatched in
each imported code module changed entities

Type 6: Untangled Change Intent Count Features encode the number of
untangled change intents in corresponding commit message

09/06/2018 @SMU-CSE 21

Supervised learningSupervised learningSupervised learningSupervised learning----based link classification system (AutoCILinkbased link classification system (AutoCILinkbased link classification system (AutoCILinkbased link classification system (AutoCILink----MMMMLLLL))))

09/06/2018 @SMU-CSE 22

AutoCILink-ML uses the SVM learning

algorithm to train a link classifier.

3

Create Training

Instances

Train

Link Classifier

Train

Link Classifier

Classify Linked or

Not-linked in Test

Set

Classify Linked or

Not-linked in Test

Set

2

1

Supervised learningSupervised learningSupervised learningSupervised learning----based link classification system (AutoCILinkbased link classification system (AutoCILinkbased link classification system (AutoCILinkbased link classification system (AutoCILink----MMMMLLLL))))

09/06/2018 @SMU-CSE 23

AutoCILink-ML determines

whether the given

untangled change intent and

changed source code file are

“linked” or “not linked”.

3

2

Create Training

Instances

Train

Link Classifier

Train

Link Classifier

Classify Linked or

Not-linked in Test

Set

Classify Linked or

Not-linked in Test

Set

1

Empirical EvaluationEmpirical EvaluationEmpirical EvaluationEmpirical Evaluation

09/06/2018 @SMU-CSE 24

Datasets: Open Source Java Projects from GitHub

19 Projects from GitHub, 572 untangled change intents, 2739 changed source code files,
3025 “linked” code-intent pairs (70.1%), and 1288 “not linked” code-intent pairs (29.9%)

Five-Fold Cross Validation

Metrics

Recall, Precision, F1-score

Accuracy: percentage of code-intent pairs correctly classified

Baseline Systems

IR-based Systems: LSI, VSM, Association-based

Majority Classifier: a greedy approach simply classify into the majority class (i.e., “linked

Untangled Intent Count Classifier: classify using threshold based on untangled chan
intents count

Overall PerformanceOverall PerformanceOverall PerformanceOverall Performance

09/06/2018 @SMU-CSE 25

RQ1. How effective is AutoCILink in linking changed code to untangled change intents?

AutoCILink-ML vs. AutoCILink-P

09/06/2018 @SMU-CSE 26

RQ2. Which system is more accurate in linking changed code to untangled change
intents, AutoCILink-ML or AutoCILink-P

Feature AblationFeature AblationFeature AblationFeature Ablation

09/06/2018 @SMU-CSE 27

. Which feature types have the largest impact on the performance of
AutoCILink-ML?

The most important features are Untangled Change Intent Count Features and

Term Unmatched Features, as their removal results in a 18.1% and 12.2% drop in

accuracy, respectively.

