Fast Strong Planning for FOND
Problems with Multi-Root Directed
Acyclic Graphs

Jicheng Ful, Andres Calderon Jaramillo?l,
Vincent Ng?, Farokh Bastani?, and I-Ling Yen?

1The University of Central Oklahoma
°The University of Texas at Dallas

Goal

< To solve strong planning problems from a Fully-
Observable Nondeterministic planning domain

Goal

< To solve strong planning problems from a Fully-
Observable Nondeterministic planning domain

Goal

< To solve strong planning problems from a Fully-
Observable Nondeterministic planning domain

< A planning problem 1s a triple (s, g,), where
> 8, 18 the 1nitial state,
> g 1s the goal condition, and

> 2. 1s the planning domain

Goal

< To solve strong planning problems from a Fully-
Observable Nondeterministic planning domain

Goal

< To solve strong planning problems from a Fully-
Observable Nondeterministic planning domain

< Informally, in a nondeterministic planning domain,
> an action may generate multiple effects

O
< 1 effects
act

Goal

< To solve strong planning problems from a Fully-
Observable Nondeterministic planning domain

< Informally, in a nondeterministic planning domain,
> an action may generate multiple effects

O
< 1 effects
act

< Formally, a nondeterministic domain
> 1sad-tuple X =(P, S, A, p

o P is a finite set of propositions;

o S ¢ 2% is a finite set of states in the system;
O A 18 a finite set of actions; and
o y: S XA — 2% is the state-transition function

Goal

< To solve strong planning problems from a Fully-
Observable Nondeterministic planning domain

Goal

< To solve strong planning problems from a Fully-
Observable Nondeterministic planning domain

< Full observability
> The states of the world are fully observable

Goal

< To solve strong planning problems from a Fully-
Observable Nondeterministic planning domain

Goal

< To solve strong planning problems from a Fully-
Observable Nondeterministic planning domain

< Strong planning

> refers to a particular type of solutions to nondeterministic
problems

> different from so-called weak planning and strong cyclic
planning

Weak Planning Solutions

< Solutions where there 1s a chance to achieve the goal

In fact, non-goal
leaf states are not
part of the weak
plan!

Non-goal leaf states

- 4 \ '~

~

O

Y A
/ .
a - e
/ : > ...
/ X4
. g / -7
. [L IRt
! e
1 _- T
\,\.\‘ ; .-
_ ; P

Nondeterministic actions

In the weak plan,
there is no path
from a non-goal leaf
state to the goal

— B——@

g

Strong Cyclic Planning Solutions

< prescribe actions for all possible non-goal leat states
> find a path for each non-goal leaf state to the goal state
» May loop indefinitely
> But contain no dead-ends

» More difficult than finding weak planning solutions

Then a strong
cyclic plan is
found!

/
O \

Strong Planning Solutions

< prescribe actions for all possible non-goal leaf states
> find a path for each non-goal leaf state to the goal state
» Contain no cycles
» Contain no dead-ends

Then a strong
plan is found!

. o ® :
_

So a, \\(i g

Representing a Plan

< Regardless of whether a plan 1s weak, strong cyclic,
or strong, we can represent it as a policy &

> a partial function mapping states to actions

% More formally, policy 7: S, — A
> consists of state action pairs (s, a) such that 7(s) = a
> defines which action to take under state s

How to Generate a Strong Plan

< Choice 1:

» Upgrade a state-of-the-art strong cyclic planner
o Such as our FIP [Fu et al., 2011] or PRP [Muise et al., 2012]

o 3 orders of magnitude faster than other state-of-the-art planners,
such as Gamer and MBP

How to Generate a Strong Plan

< State-of-the-art strong cyclic planner tries to

> find a path for each non-goal leaf state to the goal state

o Using a classical planner

Issue:
Lack of control over planning efficiency
» If the classical planner runs longer than expected

» Hard to tell whether
“* It needs more time; or \
O ¢ It is stuck in some hopeless situation O
SO /(g

= =7

Desirable Characteristics

< Has full control over planning

< Has heuristics to ensure planning towards the relevant
search direction

An Observation

< Applying action a to state s leads to a cycle

» Backtrack: make action a inapplicable to s

An Observation

< Applying action a to state s leads to a cycle

» Backtrack: make action a inapplicable to s

An Observation

< Applying action a to state s leads to a cycle
» Backtrack: make action a inapplicable to s
> If state s only has one applicable action

o It becomes a dead-end now

o Backtrack continues to s~

V44

An Observation

< Applying action a to state s leads to a cycle
» Backtrack: make action a inapplicable to s
> If state s only has one applicable action

o It 1s a dead-end now

o Backtrack continues to s~

V44

An Observation

< Applying action a to state s leads to a cycle
» Backtrack: make action a inapplicable to s
> If state s only has one applicable action

o It 1s a dead-end now
o Backtrack continues to s
o If s only has one applicable actionﬁ @ s’

o Backtrack continues
S

An Observation

< Applying action a to state s leads to a cycle
» Backtrack continues until

o It reaches a state s” that has more than one applicable action

To handle cycles
efficiently, we should

distinguish states with one ﬁ Q s’
applicable action from
those with more than S
ones! &]
a /
O S//
O O

States with One Applicable Action

< Very common

> 25% of the states have only one applicable action

o Based on benchmark problems in the International Planning
Competition 2008 (IPC 2008)

> More states will become those with only one applicable
action as planning goes on

o Actions are made inapplicable if they lead to cycles or dead-ends

MRDAG: Multi-Root Directed Acyclic Graph

« AMRDAG M = {S,,,, 7} consists of two elements,
namely, a rootset S,,, and a policy 7.

> Sur = 18,15 8,05 -5 S} © S 5, cONsists of a set of states
> States not in S,,. have only one applicable action

Rootsets

BREN
_____________________ With one
.-~ applicable acti
L7

Outsider of MRDAG

< A state s 1s called an outsider of a MRDAG M = {§,,,,
7, } 1t one of the following two conditions 1s
satisfied:

> s 1s a goal; or
> there exists (5", a’) € 7,
" a); Outsiders of MRDAG

§uch ﬂ.lE.lt se As',a); utsider ‘MRDAG,

in addition, |A(s)| > 1 and \

s does not belong to any of

M’s ancestry MRDAGs

(i.e., MRDAGs constructed

prior to M) Initial
State

MRDAG,

Child MRDAG

« A MRDAG M, rooted at §,,., 1s a child of MRDAG
M, 1t S, 1s the set of all non-goal outsiders of M,
M, 1s called the parent of M.

Child MRDAG

N4

MRDAG,

Parent
MRDAG = MRDAG,

Initial
State

A Feasible MRDAG

“ AMRDAG M = {S,,,, m,} 1s feasible if the following
three conditions are satisfied:

> V(s,a) € m, applying a to s does not lead to a cycle in
G (sy);

> V(s, a) € m,, applying a to s does not lead to a dead-end;
and

> the child of M, if any, 1s also feasible

A Strong Solution

% A strong solution 1S 7= 7, U 7 U ... U T,
where 7, T, --., Ty, are the policies of a sequence
of MRDAGs M, M,, ..., M , if the following three

conditions are satisfied:

> M, 1s rooted at s, 1.€., the 1nitial state;
> M. 1s the parentof M, fori=1,2,3,...,n—1; and
> all the outsiders of M, are goal states

Example: Simplified Blocksworld Domain

< Deterministic action put-down(B)
> puts block B onto the table

< Two nondeterministic actions
> pick-up(A, B)
> put-on(A, B)
> Both actions may drop the held block A onto the table.

Initial ‘ Goal
state
C] cl[Bl]A

> |

Blocksworld Example — The First Weak Plan

Initial state

S S
0 /a 1
PICK-UP

B (B A)

MRDAG; = ({Sy}, {(sy, PICK-UP(B A))})

C

Blocksworld Example — The First Weak Plan
Initial stateSl PU&\‘(B x .,

B C)
] c
PICK-UP —

2 (B A) o ——— | pick-up

"%

MRDAG; = ({Sy}, {(sy, PICK-UP(B A))})

So

MRDAG, = ({s;},{{5,, PUT-ON(B C))}Xs,, PICK-UP(B C)})

Blocksworld Example — The First Weak Plan

Initial state
/ C] PUT-DOWN(
PICK-UP B)
B
Cl A (B A)

MRDAG,; = ({sy}, {(5,, PICK-UP(B A))})
MRDAG, = ({s,},{{s,, PUT-DOWN(B))})

Outline of the Strong Planning Algorithm

Global Variables: 7, (s, g, X)
Function STRONG_ PLANNING
R < [s,}; T @ /*R is the rootset of the MRDAG*/
while R = ¢do
7, < GET-NEXT-SET-OF-ACTIONS(R)
if 7,, = ¢ then
if R = {5,/ then return FAILURE else
BACKTRACK(R)
endif
else
if BUILD-MRDAG(r,,) <> FAILURE then
T TU T,
if All-GOAL-OUTSIDERS(R, 7,,) then
return 7
else
R <~ GET-OUTSIDERS(R, 7,,)
endif
endif
endif
endwhile

Blocksworld Example — The First Weak Plan

Initial state
S PUT-ON(
1
SO B C)
C]
PICK-UP
Bl (BA)

MRDAG, = ({s,}, {(s,, PICK-UP(B A))})
MRDAG, = ({s;},{#,, PUT-ON(B C))})

Building a Feasible MRDAG

Function EXPAND-MRDAG (7, s, a)
foreach s" € ¥(s, a) & NOT-GOAL(s") do
if s"e S_ors” e §,, then
if DETECT-CYCLE(x U r,,) = TRUE then
return FAILURE
endif
elseif |A(s")| = 1 then
7T, <7, U{(s’,a)} witha’ e A(s")
if EXPAND-MRDAG (7M, s', a"y = FAILURE then
return FAILURE
endif
elseif |IA(s")| = O then /*dead-end*/
return FAILURE
endif
endfor
return SUCCESS

Blocksworld Example — The First Weak Plan
Initial stateSl PU&\‘(B x .,

B C)
] c
PICK-UP —

2 (B A) o ——— | pick-up

"%

MRDAG; = ({Sy}, {(sy, PICK-UP(B A))})

So

MRDAG, = ({s;},{{5,, PUT-ON(B C))}Xs,, PICK-UP(B C)})

Two Heuristics

< Try to answer

> How to impose an ordering on the states to be expanded in
the same rootset?

> How to impose an ordering on the actions to be chosen for
a state 1n the rootset?

Most Constrained State (MCS) Heuristic

< Assume that the rootset of a MRDAG 1s S,,, = {s
Sy «ees Syp}-

< Sort the states 1n §,,, in increasing order of the
number of actions applicable to a state.

rl?

S 1 S coe S .1
a as a,
a, as a,
a, as a,
Al as aq
a ar a,
a, asr a,
a, asr a,
Al cmis | o pos Ay k>

Least Heuristic Distance (LHD)

< For each state s..€ S, = {51, S,9, ---, S} (1=1<k),
we sort its applicable actions in increasing order of
the heuristic distance to the goal.

Evaluation

< All problem instances were derived from the
benchmark domains of the IPC2008 FOND track

> Blocksworld, Tireworld, Faults, and First-responders
< Goal

» For comparison, we implemented four versions
0 SP uses both heuristics,
0 MCS uses only the MCS heuristic,
o LHD uses only the LHD heuristic, and
0 NOH uses none of the heuristics.
0 Two state-of-the-art strong planners: Gamer and MBP

> give each planner 1200 seconds to solve each problem
instance

Evaluation 1: Problem Coverage

Domain | Gamer | MBP SP LHD | MCS | NOH
scbw (30) 10 10 29 30 30 30
bw(30) 10 0 30 30 10 10
ft (10) 6 4 10 10 3 3
tw (12) 11 0 12 12 5 4
fr (50) 20 10 49 49 46 45
Total (132) 57 24 130 131 94 92

Our planners solve more problems
than Gamer and MBP within the time
limit

MBP often outputs too much information to count policy size.

Evaluatlon 2: Eff|C|ency

VAP | NDD I IID | ANOQ | NINIY

pr———————— P S

| % Comparlng with Gamer and MBP

> SP and LHD are about 4 orders of magnitude faster on
strong blocksworld, first-responders, and tiresworld,

» about 3 orders of magnitude faster than Gamer on faults, and

» 2 orders of magnitude faster on strong cyclic blocksworld.

w-0 37177 14 == 0.00Z2 14 0.00Z2 14 U.0UI 14 0U.00T
w-7 R7 73R 28 0004 28 0 00S 28 0 002 47 0 001

< In terms of the contrlbutlons made by the two heuristics

> LHD is on average 5 times faster on first-responders, and up to 2 orders
of magnitude faster on tireworld and 3 orders of magnitude faster on
faults than MCS.

> MCS is about 3 times faster than LHD on strong and strong cyclic
blocksworld domains.

> In terms of plan size, LHD consistently generates much compacter plans §;
than MCS.

WWW"""”|9999|:@"’°:@:@|5‘6’5‘6’6’

T T T \v DA ve o —) T U T T =4 \vnave—7— T U T O

r-10-2 --- --- — 0.013 12 0.012 11 0.081 505 0.030

Summary

< Proposed a novel data structure, MRDAG (multi-root
directed acyclic graph)

< Conducted extensive experiments to evaluate how
planning performance 1s affected by

> the order in which the actions applicable to a state are
chosen and

> the order in which the states in the rootset of a MRDAG are

expanded via the proposal of two heuristics, MCS and
LHD.

Summary

< Experimental results showed that

> the use of MRDAG indeed made cycle handling easier and
more efficient, and

> the use of the LHD heuristic significantly improved
planning performance.

> our planner significantly outperformed two state-of-the-art
planners, Gamer and MBP, by solving more problems in
less time.

Reference

[1] U. Kuter, D. Nau, E. Reisner, and R. P. Goldman, "Using classical planners to solve

nondeterministic planning problems," in 18th International Conference on Automated Planning and
Scheduling (ICAPS), 2008.

[2] A. Cimatti, M. Pistore, M. Roveri, and P. Traverso, "Weak, strong, and strong cyclic
planning via symbolic model checking," Artif. Intell., vol. 147, pp. 35-84, 2003.

[3] P. Kissmann and S. Edelkamp, "Solving Fully-Observable Non-deterministic Planning
Problems via Translation into a General Game," in KI 2009: Advances in Artificial Intelligence. vol.
5803, B. Mertsching, et al., Eds., ed: Springer Berlin Heidelberg, 2009, pp. 1-8.

[4] J. Fu, V. Ng, F. B. Bastani, and I.-L. Yen, "Simple and fast strong cyclic planning for fully-
observable nondeterministic planning problems," in Proceedings of the Twenty-Second international
joint conference on Artificial Intelligence - Volume Three, Barcelona, Catalonia, Spain, 2011.

[5] C. J. Muise, S. A. Mcllraith, and J. C. Beck, "Improved Non-Deterministic Planning by
Exploiting State Relevance," in ICAPS, 2012.

[6] D. Bryce and O. Buffet, "International Planning Competition Uncertainty Part: Benchmarks
and Results," in Proceedings of International Planning Competition, 2008.

[7] D. Bryce and O. Buffet, "6th International Planning Competition: Uncertainty Part," in
Proceedings of International Planning Competition, 2008.

[8] R. Tarjan, "Depth-first search and linear graph algorithms," in 12th Annual Symposium on
Switching and Automata Theory, 1971, pp. 114-121.

[9] J. Hoffmann and B. Nebel, "The FF Planning System: Fast Plan Generation Through
Heuristic Search," Journal of Artificial Intelligence Research, vol. 14, pp. 253-302, 2001.

