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� A planning problem is a triple 〈s0, g, Σ〉, where 

� s0 is the initial state, 

� g is the goal condition, and 

� Σ is the planning domain
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� Informally, in a nondeterministic planning domain,

� an action may generate multiple effects

� Formally, a nondeterministic domain

� is a 4-tuple Σ = (P, S, A, γ)

� P is a finite set of propositions; 

� S ⊆ 2P is a finite set of states in the system; 

� A is a finite set of actions; and 

� γ : S × A → 2S is the state-transition function
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� Full observability

� The states of the world are fully observable
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Goal

� To solve strong planning problems from a Fully-
Observable Nondeterministic planning domain

� Strong planning

� refers to a particular type of solutions to nondeterministic 
problems

� different from so-called weak planning and strong cyclic 
planning



Weak Planning Solutions

� Solutions where there is a chance to achieve the goal

… …
s0 a1 g

…

Non-goal leaf states

Nondeterministic actions

In fact, non-goal 
leaf states are not 
part of the weak 
plan!

In the weak plan, 
there is no path 
from a non-goal leaf 
state to the goal



Strong Cyclic Planning Solutions

� prescribe actions for all possible non-goal leaf states 

� find a path for each non-goal leaf state to the goal state

� May loop indefinitely

� But contain no dead-ends

� More difficult than finding weak planning solutions
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Then a strong 
cyclic plan is 
found!



Strong Planning Solutions

� prescribe actions for all possible non-goal leaf states 

� find a path for each non-goal leaf state to the goal state

� Contain no cycles

� Contain no dead-ends

… …
s0 a1 g

…

Then a strong 
plan is found!



Representing a Plan

� Regardless of whether a plan is weak, strong cyclic, 

or strong, we can represent it as a policy π
� a partial function mapping states to actions

� More formally, policy π : Sπ → A

� consists of state action pairs (s, a) such that π(s) = a

� defines which action to take under state s



How to Generate a Strong Plan

� Choice 1:

� Upgrade a state-of-the-art strong cyclic planner

� Such as our FIP [Fu et al., 2011] or PRP [Muise et al., 2012]

� 3 orders of magnitude faster than other state-of-the-art planners, 

such as Gamer and MBP



How to Generate a Strong Plan

� State-of-the-art strong cyclic planner tries to 

� find a path for each non-goal leaf state to the goal state

� Using a classical planner

… …
s0 a1 g

…

Issue:
�Lack of control over planning efficiency

� If the classical planner runs longer than expected

�Hard to tell whether 

�It needs more time; or

�It is stuck in some hopeless situation



Desirable Characteristics

� Has full control over planning

� Has heuristics to ensure planning towards the relevant 

search direction



� Applying action a to state s leads to a cycle

� Backtrack: make action a inapplicable to s

… …

s0 g

An Observation

s

s’

s’’

a



� Applying action a to state s leads to a cycle

� Backtrack: make action a inapplicable to s

… …

s0 g

An Observation

s

s’

s’’

a



� Applying action a to state s leads to a cycle

� Backtrack: make action a inapplicable to s

� If state s only has one applicable action

� It becomes a dead-end now

� Backtrack continues to s′
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� Applying action a to state s leads to a cycle

� Backtrack: make action a inapplicable to s

� If state s only has one applicable action

� It is a dead-end now

� Backtrack continues to s′

� If s′ only has one applicable action

� Backtrack continues

… …

s0 g

An Observation

s

s’

s’’

a



� Applying action a to state s leads to a cycle

� Backtrack continues until

� It reaches a state s″ that has more than one applicable action

… …

s0 g

An Observation

s

s’

s’’

a

To handle cycles 
efficiently, we should 
distinguish states with one 
applicable action from 
those with more than 
ones!



States with One Applicable Action

� Very common

� 25% of the states have only one applicable action

� Based on benchmark problems in the International Planning 

Competition 2008 (IPC 2008)

� More states will become those with only one applicable 

action as planning goes on

� Actions are made inapplicable if they lead to cycles or dead-ends



MRDAG: Multi-Root Directed Acyclic Graph

� A MRDAG M = {SMr, πM} consists of two elements, 

namely, a rootset SMr and a policy πM.

� SMr = {sr1, sr2, …, srk} ⊆ SπM consists of a set of states

� States not in SMr have only one applicable action

Initial
State

MRDAG2

MRDAG1

Rootsets

With one 
applicable action



Outsider of MRDAG

� A state s is called an outsider of a MRDAG M = {SMr, 

πM} if one of the following two conditions is 

satisfied:

� s is a goal; or

� there exists (s′, a′) ∈ πM

such that s ∈ γ(s′, a′); 

in addition, |A(s)| > 1 and 

s does not belong to any of 

M’s ancestry MRDAGs 

(i.e., MRDAGs constructed 

prior to M)
Initial
State

MRDAG2

MRDAG1

Outsiders of MRDAG1



Child MRDAG

� A MRDAG Mc rooted at SMcr is a child of MRDAG 

Mp if SMcr is the set of all non-goal outsiders of Mp. 

Mp is called the parent of Mc.

Initial
State

MRDAG2

MRDAG1
Parent
MRDAG

Child MRDAG



A Feasible MRDAG

� A MRDAG M = {SMr, πM} is feasible if the following 

three conditions are satisfied:

� ∀(s, a) ∈ πM, applying a to s does not lead to a cycle in 

Gπ(s0);

� ∀(s, a) ∈ πM, applying a to s does not lead to a dead-end; 

and

� the child of M, if any, is also feasible



A Strong Solution

� A strong solution is π = πM1 ∪ πM2 ∪ … ∪ πMn, 

where πM1, πM2, …, πMn are the policies of a sequence 

of MRDAGs M1, M2, …, Mn, if the following three 

conditions are satisfied:

� M1 is rooted at s0, i.e., the initial state; 

� Mi is the parent of Mi+1 for i = 1, 2, 3, …, n – 1; and 

� all the outsiders of Mn are goal states



Example: Simplified Blocksworld Domain

� Deterministic action put-down(B) 

� puts block B onto the table

� Two nondeterministic actions

� pick-up(A, B) 

� put-on(A, B) 

� Both actions may drop the held block A onto the table. 

C A

B

C B A

Initial
state

Goal
state



Blocksworld Example – The First Weak Plan

C A
B

PICK-UP 
(B A)

C B A

C A

Initial state
B

Goal

MRDAG1 = 〈{s0}, {(s0, PICK-UP(B A))}〉

s0 s1



Blocksworld Example – The First Weak Plan

C A
B

PICK-UP 
(B A)

C B A

PUT-ON(
B C)

C

B

AC A

PICK-UP 
(B C)

Initial state
B

Goal

MRDAG1 = 〈{s0}, {(s0, PICK-UP(B A))}〉

MRDAG2 = 〈{s1},{}〉

s0
s1

MRDAG2 = 〈{s1},{(s1, PUT-ON(B C))}〉MRDAG2 = 〈{s1},{(s1, PUT-ON(B C)), (s2, PICK-UP(B C)}〉

s2



Blocksworld Example – The First Weak Plan

C A
B

PICK-UP 
(B A)

C B A

PUT-DOWN(
B)

C A

Initial state
B

Goal

MRDAG1 = 〈{s0}, {(s0, PICK-UP(B A))}〉

MRDAG2 = 〈{s1},{}〉MRDAG2 = 〈{s1},{(s1, PUT-DOWN(B))}〉



Outline of the Strong Planning Algorithm

Global Variables: π, 〈s
0
, g, Σ〉

Function STRONG_PLANNING

R ← {s
0
}; π ← φ /*R is the rootset of the MRDAG*/

while R ≠ φ do

π
M

← GET-NEXT-SET-OF-ACTIONS(R)

if π
M

= φ then

if R = {s
0
} then return FAILURE else

BACKTRACK(R)

endif

else

if BUILD-MRDAG(π
M

) <> FAILURE then

π ← π ∪ π
M

if All-GOAL-OUTSIDERS(R, π
M

) then

return π
else

R ← GET-OUTSIDERS(R, π
M

)

endif

endif

endif

endwhile



Blocksworld Example – The First Weak Plan

C A
B

PICK-UP 
(B A)

C B A

PUT-ON(
B C)

C A

Initial state
B

Goal

MRDAG1 = 〈{s0}, {(s0, PICK-UP(B A))}〉

MRDAG2 = 〈{s1},{}〉

s0
s1

MRDAG2 = 〈{s1},{(s1, PUT-ON(B C))}〉



Building a Feasible MRDAG

Function EXPAND-MRDAG (π
M

, s, a)

foreach s′ ∈ γ (s, a) & NOT-GOAL(s′) do

if s′ ∈ Sπ or s′ ∈ SπM then

if DETECT-CYCLE(π ∪ π
M

) = TRUE then

return FAILURE 

endif

elseif |A(s')| = 1 then

π
M

← π
M

∪ {(s', a′)} with a′ ∈ A(s')

if EXPAND-MRDAG (πM, s', a') = FAILURE then

return FAILURE

endif

elseif |A(s')| = 0 then /*dead-end*/

return FAILURE     

endif

endfor

return SUCCESS



Blocksworld Example – The First Weak Plan

C A
B

PICK-UP 
(B A)

C B A

PUT-ON(
B C)

C

B

AC A

PICK-UP 
(B C)

Initial state
B

Goal

MRDAG1 = 〈{s0}, {(s0, PICK-UP(B A))}〉

MRDAG2 = 〈{s1},{}〉

s0
s1

MRDAG2 = 〈{s1},{(s1, PUT-ON(B C))}〉MRDAG2 = 〈{s1},{(s1, PUT-ON(B C)), (s2, PICK-UP(B C)}〉

s2



Two Heuristics

� Try to answer

� How to impose an ordering on the states to be expanded in 

the same rootset?

� How to impose an ordering on the actions to be chosen for 

a state in the rootset?



Most Constrained State (MCS) Heuristic

� Assume that the rootset of a MRDAG is SMr = {sr1, 

sr2, …, srk}.

� Sort the states in SMr in increasing order of the 

number of actions applicable to a state.

s
r1 s

r2 … s
rk

a11 a21 … ak1

a12 a21 … ak1

a13 a21 … ak1

⁞

a1<m1> a21 … ak1

a11 a22 … ak1

a12 a22 … ak1

a13 a22 … ak1

⁞

a1<m1> a2<m2> … ak<mk>



Least Heuristic Distance (LHD)

� For each state sri ∈ SMr = {sr1, sr2, …, srk} (1≤ i ≤ k), 

we sort its applicable actions in increasing order of 

the heuristic distance to the goal.



Evaluation

� All problem instances were derived from the 

benchmark domains of the IPC2008 FOND track

� Blocksworld, Tireworld, Faults, and First-responders

� Goal

� For comparison, we implemented four versions

� SP uses both heuristics, 

� MCS uses only the MCS heuristic, 

� LHD uses only the LHD heuristic, and 

� NOH uses none of the heuristics.

� Two state-of-the-art strong planners: Gamer and MBP

� give each planner 1200 seconds to solve each problem 

instance



Evaluation 1: Problem Coverage

Our planners solve more problems 
than Gamer and MBP within the time 
limit

Domain Gamer MBP SP LHD MCS NOH

scbw (30) 10 10 29 30 30 30

bw(30) 10 0 30 30 10 10

ft (10) 6 4 10 10 3 3

tw (12) 11 0 12 12 5 4

fr (50) 20 10 49 49 46 45

Total (132) 57 24 130 131 94 92



Evaluation 2: Efficiency
Problem

Gamer MBP SP LHD MCS NOH
t s t t s t s t s t s

scbw-1 0.760 NA 148.346 0.003 NA 0.002 NA 0.001 NA 0.001 NA

scbw-2 1.244 NA 221.011 0.001 NA 0.001 NA 0.001 NA 0.001 NA

scbw-3 0.961 NA 167.435 0.003 NA 0.003 NA 0.001 NA 0.001 NA

scbw-6 0.658 NA 70.287 0.002 NA 0.002 NA 0.001 NA 0.001 NA

scbw-8 0.633 NA 57.433 0.003 NA 0.002 NA 0.001 NA 0.001 NA

scbw-9 1.001 NA 228.980 0.001 NA 0.002 NA 0.001 NA 0.001 NA

scbw-10 0.911 NA 232.064 0.003 NA 0.003 NA 0.001 NA 0.001 NA

scbw-20 --- --- --- 0.119 NA 0.141 NA 0.041 NA 0.049 NA

scbw-30 --- --- --- 0.326 NA 0.344 NA 0.057 NA 0.057 NA

bw-1 89.462 21 --- 0.003 21 0.003 21 0.001 33 0.001 21
bw-2 86.071 14 --- 0.002 14 0.001 14 0.001 23 0.001 39

bw-3 86.888 21 --- 0.003 21 0.003 21 0.001 38 0.001 33
bw-5 88.048 21 --- 0.003 21 0.003 21 0.001 33 0.001 68
bw-6 87.177 14 --- 0.002 14 0.002 14 0.001 14 0.001 21
bw-7 87.738 28 --- 0.004 28 0.005 28 0.002 47 0.001 52
bw-8 85.607 28 --- 0.004 28 0.004 28 0.001 45 0.002 47

bw-9 87.953 28 --- 0.004 28 0.004 28 0.003 104 0.002 100
bw-10 88.974 21 --- 0.003 21 0.003 21 0.001 31 0.001 38
bw-20 --- --- --- 0.059 40 0.056 40 --- --- --- ---
bw-30 --- --- --- 0.557 65 1.157 65 --- --- --- ---
ft-6-6 291.790 127 --- 0.012 127 0.012 127 --- --- --- ---

ft-8-8 --- --- --- 0.088 511 0.089 511 --- --- --- ---
ft-9-9 --- --- --- 0.237 1023 0.235 1023 --- --- --- ---
ft-10-10 --- --- --- 0.620 2047 0.619 2047 --- --- --- ---
tw-10 234.021 1 --- 0.001 1 0.001 1 --- --- 0.770 868
tw-11 241.141 5 --- 0.001 5 0.001 5 --- --- --- ---

tw-12 242.036 1 --- 0.001 1 0.001 1 --- --- --- ---
tw-14 95.095 21 --- 0.009 34 0.009 32 --- --- --- ---
fr-1-8 10.046 10 55.377 0.002 10 0.003 10 0.006 172 0.010 328
fr-1-9 52.265 11 296.332 0.003 11 0.003 11 --- --- 0.016 448
fr-1-10 721.715 12 --- 0.004 12 0.004 12 0.044 1037 0.036 857

fr-10-1 0.754 3 --- 0.012 3 0.011 3 0.022 95 0.070 289
fr-10-2 --- --- --- 0.013 12 0.012 11 0.081 505 0.030 197

� Comparing with Gamer and MBP

� SP and LHD are about 4 orders of magnitude faster on 

strong blocksworld, first-responders, and tiresworld, 

� about 3 orders of magnitude faster than Gamer on faults, and 

� 2 orders of magnitude faster on strong cyclic blocksworld.

� In terms of the contributions made by the two heuristics

� LHD is on average 5 times faster on first-responders, and up to 2 orders 

of magnitude faster on tireworld and 3 orders of magnitude faster on 

faults than MCS. 

� MCS is about 3 times faster than LHD on strong and strong cyclic

blocksworld domains. 

� In terms of plan size, LHD consistently generates much compacter plans 

than MCS. 

[1] MBP often outputs too much information to count policy size.



Summary

� Proposed a novel data structure, MRDAG (multi-root 

directed acyclic graph)

� Conducted extensive experiments to evaluate how 

planning performance is affected by 

� the order in which the actions applicable to a state are 

chosen and 

� the order in which the states in the rootset of a MRDAG are 

expanded via the proposal of two heuristics, MCS and 

LHD.



Summary

� Experimental results showed that 

� the use of MRDAG indeed made cycle handling easier and 

more efficient, and 

� the use of the LHD heuristic significantly improved 

planning performance. 

� our planner significantly outperformed two state-of-the-art 

planners, Gamer and MBP, by solving more problems in 

less time.
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