
Fast Strong Planning for FOND

Problems with Multi-Root Directed

Acyclic Graphs

Jicheng Fu1, Andres Calderon Jaramillo1,
Vincent Ng2, Farokh Bastani2, and I-Ling Yen2

1The University of Central Oklahoma
2The University of Texas at Dallas

Goal

� To solve strong planning problems from a Fully-
Observable Nondeterministic planning domain

Goal

� To solve strong planning problems from a Fully-
Observable Nondeterministic planning domain

Goal

� To solve strong planning problems from a Fully-
Observable Nondeterministic planning domain

� A planning problem is a triple 〈s0, g, Σ〉, where

� s0 is the initial state,

� g is the goal condition, and

� Σ is the planning domain

Goal

� To solve strong planning problems from a Fully-
Observable Nondeterministic planning domain

Goal

� To solve strong planning problems from a Fully-
Observable Nondeterministic planning domain

� Informally, in a nondeterministic planning domain,

� an action may generate multiple effects

act

…

effects

Goal

� To solve strong planning problems from a Fully-
Observable Nondeterministic planning domain

� Informally, in a nondeterministic planning domain,

� an action may generate multiple effects

� Formally, a nondeterministic domain

� is a 4-tuple Σ = (P, S, A, γ)

� P is a finite set of propositions;

� S ⊆ 2P is a finite set of states in the system;

� A is a finite set of actions; and

� γ : S × A → 2S is the state-transition function

act

…

effects

Goal

� To solve strong planning problems from a Fully-
Observable Nondeterministic planning domain

Goal

� To solve strong planning problems from a Fully-
Observable Nondeterministic planning domain

� Full observability

� The states of the world are fully observable

Goal

� To solve strong planning problems from a Fully-
Observable Nondeterministic planning domain

Goal

� To solve strong planning problems from a Fully-
Observable Nondeterministic planning domain

� Strong planning

� refers to a particular type of solutions to nondeterministic
problems

� different from so-called weak planning and strong cyclic
planning

Weak Planning Solutions

� Solutions where there is a chance to achieve the goal

… …
s0 a1 g

…

Non-goal leaf states

Nondeterministic actions

In fact, non-goal
leaf states are not
part of the weak
plan!

In the weak plan,
there is no path
from a non-goal leaf
state to the goal

Strong Cyclic Planning Solutions

� prescribe actions for all possible non-goal leaf states

� find a path for each non-goal leaf state to the goal state

� May loop indefinitely

� But contain no dead-ends

� More difficult than finding weak planning solutions

… …
s0 a1 g

…

Then a strong
cyclic plan is
found!

Strong Planning Solutions

� prescribe actions for all possible non-goal leaf states

� find a path for each non-goal leaf state to the goal state

� Contain no cycles

� Contain no dead-ends

… …
s0 a1 g

…

Then a strong
plan is found!

Representing a Plan

� Regardless of whether a plan is weak, strong cyclic,

or strong, we can represent it as a policy π
� a partial function mapping states to actions

� More formally, policy π : Sπ → A

� consists of state action pairs (s, a) such that π(s) = a

� defines which action to take under state s

How to Generate a Strong Plan

� Choice 1:

� Upgrade a state-of-the-art strong cyclic planner

� Such as our FIP [Fu et al., 2011] or PRP [Muise et al., 2012]

� 3 orders of magnitude faster than other state-of-the-art planners,

such as Gamer and MBP

How to Generate a Strong Plan

� State-of-the-art strong cyclic planner tries to

� find a path for each non-goal leaf state to the goal state

� Using a classical planner

… …
s0 a1 g

…

Issue:
�Lack of control over planning efficiency

� If the classical planner runs longer than expected

�Hard to tell whether

�It needs more time; or

�It is stuck in some hopeless situation

Desirable Characteristics

� Has full control over planning

� Has heuristics to ensure planning towards the relevant

search direction

� Applying action a to state s leads to a cycle

� Backtrack: make action a inapplicable to s

… …

s0 g

An Observation

s

s’

s’’

a

� Applying action a to state s leads to a cycle

� Backtrack: make action a inapplicable to s

… …

s0 g

An Observation

s

s’

s’’

a

� Applying action a to state s leads to a cycle

� Backtrack: make action a inapplicable to s

� If state s only has one applicable action

� It becomes a dead-end now

� Backtrack continues to s′

… …

s0 g

An Observation

s

s’

s’’

a

� Applying action a to state s leads to a cycle

� Backtrack: make action a inapplicable to s

� If state s only has one applicable action

� It is a dead-end now

� Backtrack continues to s′

… …

s0 g

An Observation

s

s’

s’’

a

� Applying action a to state s leads to a cycle

� Backtrack: make action a inapplicable to s

� If state s only has one applicable action

� It is a dead-end now

� Backtrack continues to s′

� If s′ only has one applicable action

� Backtrack continues

… …

s0 g

An Observation

s

s’

s’’

a

� Applying action a to state s leads to a cycle

� Backtrack continues until

� It reaches a state s″ that has more than one applicable action

… …

s0 g

An Observation

s

s’

s’’

a

To handle cycles
efficiently, we should
distinguish states with one
applicable action from
those with more than
ones!

States with One Applicable Action

� Very common

� 25% of the states have only one applicable action

� Based on benchmark problems in the International Planning

Competition 2008 (IPC 2008)

� More states will become those with only one applicable

action as planning goes on

� Actions are made inapplicable if they lead to cycles or dead-ends

MRDAG: Multi-Root Directed Acyclic Graph

� A MRDAG M = {SMr, πM} consists of two elements,

namely, a rootset SMr and a policy πM.

� SMr = {sr1, sr2, …, srk} ⊆ SπM consists of a set of states

� States not in SMr have only one applicable action

Initial
State

MRDAG2

MRDAG1

Rootsets

With one
applicable action

Outsider of MRDAG

� A state s is called an outsider of a MRDAG M = {SMr,

πM} if one of the following two conditions is

satisfied:

� s is a goal; or

� there exists (s′, a′) ∈ πM

such that s ∈ γ(s′, a′);

in addition, |A(s)| > 1 and

s does not belong to any of

M’s ancestry MRDAGs

(i.e., MRDAGs constructed

prior to M)
Initial
State

MRDAG2

MRDAG1

Outsiders of MRDAG1

Child MRDAG

� A MRDAG Mc rooted at SMcr is a child of MRDAG

Mp if SMcr is the set of all non-goal outsiders of Mp.

Mp is called the parent of Mc.

Initial
State

MRDAG2

MRDAG1
Parent
MRDAG

Child MRDAG

A Feasible MRDAG

� A MRDAG M = {SMr, πM} is feasible if the following

three conditions are satisfied:

� ∀(s, a) ∈ πM, applying a to s does not lead to a cycle in

Gπ(s0);

� ∀(s, a) ∈ πM, applying a to s does not lead to a dead-end;

and

� the child of M, if any, is also feasible

A Strong Solution

� A strong solution is π = πM1 ∪ πM2 ∪ … ∪ πMn,

where πM1, πM2, …, πMn are the policies of a sequence

of MRDAGs M1, M2, …, Mn, if the following three

conditions are satisfied:

� M1 is rooted at s0, i.e., the initial state;

� Mi is the parent of Mi+1 for i = 1, 2, 3, …, n – 1; and

� all the outsiders of Mn are goal states

Example: Simplified Blocksworld Domain

� Deterministic action put-down(B)

� puts block B onto the table

� Two nondeterministic actions

� pick-up(A, B)

� put-on(A, B)

� Both actions may drop the held block A onto the table.

C A

B

C B A

Initial
state

Goal
state

Blocksworld Example – The First Weak Plan

C A
B

PICK-UP
(B A)

C B A

C A

Initial state
B

Goal

MRDAG1 = 〈{s0}, {(s0, PICK-UP(B A))}〉

s0 s1

Blocksworld Example – The First Weak Plan

C A
B

PICK-UP
(B A)

C B A

PUT-ON(
B C)

C

B

AC A

PICK-UP
(B C)

Initial state
B

Goal

MRDAG1 = 〈{s0}, {(s0, PICK-UP(B A))}〉

MRDAG2 = 〈{s1},{}〉

s0
s1

MRDAG2 = 〈{s1},{(s1, PUT-ON(B C))}〉MRDAG2 = 〈{s1},{(s1, PUT-ON(B C)), (s2, PICK-UP(B C)}〉

s2

Blocksworld Example – The First Weak Plan

C A
B

PICK-UP
(B A)

C B A

PUT-DOWN(
B)

C A

Initial state
B

Goal

MRDAG1 = 〈{s0}, {(s0, PICK-UP(B A))}〉

MRDAG2 = 〈{s1},{}〉MRDAG2 = 〈{s1},{(s1, PUT-DOWN(B))}〉

Outline of the Strong Planning Algorithm

Global Variables: π, 〈s
0
, g, Σ〉

Function STRONG_PLANNING

R ← {s
0
}; π ← φ /*R is the rootset of the MRDAG*/

while R ≠ φ do

π
M

← GET-NEXT-SET-OF-ACTIONS(R)

if π
M

= φ then

if R = {s
0
} then return FAILURE else

BACKTRACK(R)

endif

else

if BUILD-MRDAG(π
M

) <> FAILURE then

π ← π ∪ π
M

if All-GOAL-OUTSIDERS(R, π
M

) then

return π
else

R ← GET-OUTSIDERS(R, π
M

)

endif

endif

endif

endwhile

Blocksworld Example – The First Weak Plan

C A
B

PICK-UP
(B A)

C B A

PUT-ON(
B C)

C A

Initial state
B

Goal

MRDAG1 = 〈{s0}, {(s0, PICK-UP(B A))}〉

MRDAG2 = 〈{s1},{}〉

s0
s1

MRDAG2 = 〈{s1},{(s1, PUT-ON(B C))}〉

Building a Feasible MRDAG

Function EXPAND-MRDAG (π
M

, s, a)

foreach s′ ∈ γ (s, a) & NOT-GOAL(s′) do

if s′ ∈ Sπ or s′ ∈ SπM then

if DETECT-CYCLE(π ∪ π
M

) = TRUE then

return FAILURE

endif

elseif |A(s')| = 1 then

π
M

← π
M

∪ {(s', a′)} with a′ ∈ A(s')

if EXPAND-MRDAG (πM, s', a') = FAILURE then

return FAILURE

endif

elseif |A(s')| = 0 then /*dead-end*/

return FAILURE

endif

endfor

return SUCCESS

Blocksworld Example – The First Weak Plan

C A
B

PICK-UP
(B A)

C B A

PUT-ON(
B C)

C

B

AC A

PICK-UP
(B C)

Initial state
B

Goal

MRDAG1 = 〈{s0}, {(s0, PICK-UP(B A))}〉

MRDAG2 = 〈{s1},{}〉

s0
s1

MRDAG2 = 〈{s1},{(s1, PUT-ON(B C))}〉MRDAG2 = 〈{s1},{(s1, PUT-ON(B C)), (s2, PICK-UP(B C)}〉

s2

Two Heuristics

� Try to answer

� How to impose an ordering on the states to be expanded in

the same rootset?

� How to impose an ordering on the actions to be chosen for

a state in the rootset?

Most Constrained State (MCS) Heuristic

� Assume that the rootset of a MRDAG is SMr = {sr1,

sr2, …, srk}.

� Sort the states in SMr in increasing order of the

number of actions applicable to a state.

s
r1 s

r2 … s
rk

a11 a21 … ak1

a12 a21 … ak1

a13 a21 … ak1

⁞

a1<m1> a21 … ak1

a11 a22 … ak1

a12 a22 … ak1

a13 a22 … ak1

⁞

a1<m1> a2<m2> … ak<mk>

Least Heuristic Distance (LHD)

� For each state sri ∈ SMr = {sr1, sr2, …, srk} (1≤ i ≤ k),

we sort its applicable actions in increasing order of

the heuristic distance to the goal.

Evaluation

� All problem instances were derived from the

benchmark domains of the IPC2008 FOND track

� Blocksworld, Tireworld, Faults, and First-responders

� Goal

� For comparison, we implemented four versions

� SP uses both heuristics,

� MCS uses only the MCS heuristic,

� LHD uses only the LHD heuristic, and

� NOH uses none of the heuristics.

� Two state-of-the-art strong planners: Gamer and MBP

� give each planner 1200 seconds to solve each problem

instance

Evaluation 1: Problem Coverage

Our planners solve more problems
than Gamer and MBP within the time
limit

Domain Gamer MBP SP LHD MCS NOH

scbw (30) 10 10 29 30 30 30

bw(30) 10 0 30 30 10 10

ft (10) 6 4 10 10 3 3

tw (12) 11 0 12 12 5 4

fr (50) 20 10 49 49 46 45

Total (132) 57 24 130 131 94 92

Evaluation 2: Efficiency
Problem

Gamer MBP SP LHD MCS NOH
t s t t s t s t s t s

scbw-1 0.760 NA 148.346 0.003 NA 0.002 NA 0.001 NA 0.001 NA

scbw-2 1.244 NA 221.011 0.001 NA 0.001 NA 0.001 NA 0.001 NA

scbw-3 0.961 NA 167.435 0.003 NA 0.003 NA 0.001 NA 0.001 NA

scbw-6 0.658 NA 70.287 0.002 NA 0.002 NA 0.001 NA 0.001 NA

scbw-8 0.633 NA 57.433 0.003 NA 0.002 NA 0.001 NA 0.001 NA

scbw-9 1.001 NA 228.980 0.001 NA 0.002 NA 0.001 NA 0.001 NA

scbw-10 0.911 NA 232.064 0.003 NA 0.003 NA 0.001 NA 0.001 NA

scbw-20 --- --- --- 0.119 NA 0.141 NA 0.041 NA 0.049 NA

scbw-30 --- --- --- 0.326 NA 0.344 NA 0.057 NA 0.057 NA

bw-1 89.462 21 --- 0.003 21 0.003 21 0.001 33 0.001 21
bw-2 86.071 14 --- 0.002 14 0.001 14 0.001 23 0.001 39

bw-3 86.888 21 --- 0.003 21 0.003 21 0.001 38 0.001 33
bw-5 88.048 21 --- 0.003 21 0.003 21 0.001 33 0.001 68
bw-6 87.177 14 --- 0.002 14 0.002 14 0.001 14 0.001 21
bw-7 87.738 28 --- 0.004 28 0.005 28 0.002 47 0.001 52
bw-8 85.607 28 --- 0.004 28 0.004 28 0.001 45 0.002 47

bw-9 87.953 28 --- 0.004 28 0.004 28 0.003 104 0.002 100
bw-10 88.974 21 --- 0.003 21 0.003 21 0.001 31 0.001 38
bw-20 --- --- --- 0.059 40 0.056 40 --- --- --- ---
bw-30 --- --- --- 0.557 65 1.157 65 --- --- --- ---
ft-6-6 291.790 127 --- 0.012 127 0.012 127 --- --- --- ---

ft-8-8 --- --- --- 0.088 511 0.089 511 --- --- --- ---
ft-9-9 --- --- --- 0.237 1023 0.235 1023 --- --- --- ---
ft-10-10 --- --- --- 0.620 2047 0.619 2047 --- --- --- ---
tw-10 234.021 1 --- 0.001 1 0.001 1 --- --- 0.770 868
tw-11 241.141 5 --- 0.001 5 0.001 5 --- --- --- ---

tw-12 242.036 1 --- 0.001 1 0.001 1 --- --- --- ---
tw-14 95.095 21 --- 0.009 34 0.009 32 --- --- --- ---
fr-1-8 10.046 10 55.377 0.002 10 0.003 10 0.006 172 0.010 328
fr-1-9 52.265 11 296.332 0.003 11 0.003 11 --- --- 0.016 448
fr-1-10 721.715 12 --- 0.004 12 0.004 12 0.044 1037 0.036 857

fr-10-1 0.754 3 --- 0.012 3 0.011 3 0.022 95 0.070 289
fr-10-2 --- --- --- 0.013 12 0.012 11 0.081 505 0.030 197

� Comparing with Gamer and MBP

� SP and LHD are about 4 orders of magnitude faster on

strong blocksworld, first-responders, and tiresworld,

� about 3 orders of magnitude faster than Gamer on faults, and

� 2 orders of magnitude faster on strong cyclic blocksworld.

� In terms of the contributions made by the two heuristics

� LHD is on average 5 times faster on first-responders, and up to 2 orders

of magnitude faster on tireworld and 3 orders of magnitude faster on

faults than MCS.

� MCS is about 3 times faster than LHD on strong and strong cyclic

blocksworld domains.

� In terms of plan size, LHD consistently generates much compacter plans

than MCS.

[1] MBP often outputs too much information to count policy size.

Summary

� Proposed a novel data structure, MRDAG (multi-root

directed acyclic graph)

� Conducted extensive experiments to evaluate how

planning performance is affected by

� the order in which the actions applicable to a state are

chosen and

� the order in which the states in the rootset of a MRDAG are

expanded via the proposal of two heuristics, MCS and

LHD.

Summary

� Experimental results showed that

� the use of MRDAG indeed made cycle handling easier and

more efficient, and

� the use of the LHD heuristic significantly improved

planning performance.

� our planner significantly outperformed two state-of-the-art

planners, Gamer and MBP, by solving more problems in

less time.

Reference

� [1] U. Kuter, D. Nau, E. Reisner, and R. P. Goldman, "Using classical planners to solve
nondeterministic planning problems," in 18th International Conference on Automated Planning and
Scheduling (ICAPS), 2008.

� [2] A. Cimatti, M. Pistore, M. Roveri, and P. Traverso, "Weak, strong, and strong cyclic
planning via symbolic model checking," Artif. Intell., vol. 147, pp. 35-84, 2003.

� [3] P. Kissmann and S. Edelkamp, "Solving Fully-Observable Non-deterministic Planning
Problems via Translation into a General Game," in KI 2009: Advances in Artificial Intelligence. vol.
5803, B. Mertsching, et al., Eds., ed: Springer Berlin Heidelberg, 2009, pp. 1-8.

� [4] J. Fu, V. Ng, F. B. Bastani, and I.-L. Yen, "Simple and fast strong cyclic planning for fully-
observable nondeterministic planning problems," in Proceedings of the Twenty-Second international
joint conference on Artificial Intelligence - Volume Three, Barcelona, Catalonia, Spain, 2011.

� [5] C. J. Muise, S. A. McIlraith, and J. C. Beck, "Improved Non-Deterministic Planning by
Exploiting State Relevance," in ICAPS, 2012.

� [6] D. Bryce and O. Buffet, "International Planning Competition Uncertainty Part: Benchmarks
and Results," in Proceedings of International Planning Competition, 2008.

� [7] D. Bryce and O. Buffet, "6th International Planning Competition: Uncertainty Part," in
Proceedings of International Planning Competition, 2008.

� [8] R. Tarjan, "Depth-first search and linear graph algorithms," in 12th Annual Symposium on
Switching and Automata Theory, 1971, pp. 114-121.

� [9] J. Hoffmann and B. Nebel, "The FF Planning System: Fast Plan Generation Through
Heuristic Search," Journal of Artificial Intelligence Research, vol. 14, pp. 253-302, 2001.

