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Standard Machine Learning Approach

S Step 1: Classification

» given a description of two noun phrases, NP;and NP,
classifies the pair as coreferent or not coreferent

coref ? coref ?
| | | |

[Queeln Elizabeth] set about transforming [her] [huslband],

not coref ?

Aone & Bennett [1995]; Connolly et al. [1994]; McCarthy & Lehnert [1995];
Soon, Ng & Lim [2001]; Ng & Cardie [2002]



Standard Machine Learning Approach

S Step 2: Clustering
» coordinates pairwise classification decisions
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This Talk

S Development of linguistic features for coreference resolution

§ Research in coreference resolution has largely adopted a
knowledge-lean approach (Mitkov et al., 2001)
» Resolvers operate by relying on morpho-syntactic cues
String matching, gender/number agreement, binding constraints

» However, there are coreference relations that cannot be
identified by using string-matching facilities and syntactic cues

Coreference relations between two lexically dissimilar common
nouns (e.g., talks and negotiations)

Coreference relations between a proper NP and a common NP
(e.g., George W. Bush and the president)
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Goal

§ Investigate features that encode semantic and other
non-morpho-syntactic knowledge for improving the
performance of a learning-based coreference system
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Goal

§ Investigate features that encode semantic and other
non-morpho-syntactic knowledge for improving the
performance of a learning-based coreference system

§ Focus on inducing linguistic features

» one feature exploits the fact that we are doing ACE
coreference

25
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1. The Semantic Class Agreement Feature

S Determines whether the semantic classes of two NPs agree
» Yes for Mahatma Ghandi and the president
» No for Hyderabad and the president

S Need to compute the semantic classes of the two NPs
» For a named entity, use a named entity recognizer

» For a common noun, use WordNet (choose the first sense)
An overly simplistic heuristic

Feature not used by Soon et al.’s (2001) resolver for the
MUC-6 dataset
§ Goal: improve computation of the semantic class of an NP
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The Semantic Class Induction Algorithm

§ Given a large, unannotated corpus

» Extract appositive relations
<Eastern Airlines, carrier>, <George Bush, president>, ...

» Use a named entity (NE) recognizer to find the semantic
classes of the proper names

» Infer the semantic class of a common nouns from the
associated proper name
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The Semantic Class Induction Algorithm

§ Given a large, unannotated corpus <= Bl | |P+Reuters

» Extract appositive relations <=== MINIPAR
» <Eastern Airlines, carrier>, <George Bush, president>, ...

» Use a named entity (NE) recognizer to find the semantic
classes of the proper names Identifinder (MUC-style NER)

» Infer the semantic class of a common nouns from the
associated proper name
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Potential Problem

. _ a common noun
S ldentifinder Is not perfect could be labeled

» Mislabels proper names with more than one
semantic class

S MINIPAR is not perfect
» Extracts NP pairs that are not in apposition
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Potential Problem

S ldentifinder Is not perfect could be labeled

>

a common noun

Mislabels proper names with more than one
semantic class

S MINIPAR is not perfect

>

Extracts NP pairs that are not in apposition

S Need a more robust method of inferring the semantic
class of a common noun

1.

Compute the probability that the common noun co-occurs
with each of the named entity types

If the most likely NE type has a probability above 0.7, label
the common noun with the most likely NE type
43



Other Problems

§ Common nouns that do not belong to one of the seven
MUC NE types will remain unlabeled
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Other Problems

§ Common nouns that do not belong to one of the seven
MUC NE types will remain unlabeled

§ Common nouns that do not co-occur with any NE type
with a probability above 0.7 will remain unlabeled

§ Solution: fall back on the first-sense heuristic
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2. The ACE-Specific Semantic Agreement Feature

§ Motivation

» The SEM_CLASS feature was developed for use in a
general-purpose coreference system

» We may be able to improve performance on the ACE data if
we develop an ACE-specific semantic agreement feature
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2. The ACE-Specific Semantic Agreement Feature

§ Motivation

» The SEM_CLASS feature was developed for use in a
general-purpose coreference system

» We may be able to improve performance on the ACE data if
we develop an ACE-specific semantic agreement feature

§ ACE coreference

» Resolve references to NPs that belong to one of the five
ACE semantic classes (ASCs)

PERSON, ORGANIZATION, FACILITY, GSP, LOCATION
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Definition of ACE Semantic Classes

S PERSON (human)
» Mahatma Ghandi, the postman, ...
S ORGANIZATION (corporation, agency, government)
» Indian Institute of Technology, the company, ...
§ FACILITY (man-made structure)
» Hyderabad International Convention Center, the building, ...
S GSP (geo-political region)
» India, Hyderabad, the city, the province, ...
S LOCATION (geographical area, landmass, body of water)
» The Bay of Bengal, the Himalayas, the mountain, ...

§ Goal: develop a feature that considers two NPs compatible

If and only if the two NPs have a common ASC y



Determining the ASC of an NP

§ Based in part on the semantic class of the NP as
computed by the SEM_CLASS feature
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PERSON > PERSON
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Determining the ASC of an NP

§ Based in part on the semantic class of the NP as
computed by the SEM_CLASS feature

§ Rough correspondence between SEM_CLASS and ASC

SEM CLASS

PERSON

ORGANIZATION ?

LOCATION

——

=

AS

PERSON

ORGANIZATION
FACILITY

GSP

LOCATION
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The ASC Determination Algorithm

S Ifits SEM_CLASS is not PERSON, ORGANIZATION, or
LOCATION, its ASC will be OTHERS

S Ifits SEM_CLASS is PERSON, its ASC will be PERSON

SEM CLASS ASC
PERSON  PERSON

ORG ORG, FACILITY
LOCATION GSP, LOCATION
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The ASC Determination Algorithm (Cont’)

S Ifits SEM_CLASS is LOCATION, need to determine
whether its ASC is GSP or LOCATION
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The ASC Determination Algorithm (Cont’)

S Ifits SEM_CLASS is ORGANIZATION, need to determine
whether its ASC is FACILITY or ORGANIZATION
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The ASC Determination Algorithm (Cont’)

S Ifits SEM_CLASS is ORGANIZATION, need to determine
whether its ASC is FACILITY or ORGANIZATION

» Check whether its head noun is a hypernym of an
ORGANIZATION-related word or a FACILITY-related word

n ORGANIZATION-related words: social group

» FACILITY-related words: establishment, construction,
building, facility, workplace

SEM CLASS ASC
PERSON  PERSON

ORG ORG, FACILITY
LOCATION GSP, LOCATION
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3. The Anaphoricity Feature

§ Anaphoricity determination is the problem of determining
whether an NP has an antecedent or not
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3. The Anaphoricity Feature

§ Anaphoricity determination is the problem of determining
whether an NP has an antecedent or not

» Knowledge of anaphoricity could improve system precision

S Previous approaches

» Heuristic-based : Lappin and Leass (1994), Kennedy and
Boguraev (1996), Vieira and Poesio (2000)

» Unsupervised: Bean and Riloff (1999)
» Supervised: Evans (2001), Ng and Cardie (2002)

§ Goal: examine whether shallow anaphoricity information
could benefit a learning-based coreference resolution
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Computing the Anaphoricity Feature

§ Given a corpus labeled with coreference information

» Compute the anaphoricity of an NP as the probability that it
has an antecedent in the corpus

If the NP never appears in the corpus, set its anaphoricity
value to -1
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Computing the Anaphoricity Feature

§ Given a corpus labeled with coreference information

» Compute the anaphoricity of an NP as the probability that it
has an antecedent in the corpus

If the NP never appears in the corpus, set its anaphoricity
value to -1

S Data sparseness Is a problem, but the feature still
captures some useful information

» it Is only moderately anaphoric
» the contrary (from on the contrary) is never anaphoric
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4. The Coreferentiality Feature

S Adapt the method for generating the anaphoricity feature
to create a coreferentiality feature

S Feature encodes the probability that two NPs are coreferent

» Estimate the probabilities from a coreference corpus

If one or both of the given NPs do not appear in the corpus,
set the coreferentiality value to -1
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The Remaining Features

5. The Semantic Similarity Feature
» Determines the semantic similarity of two common NPs
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The Remaining Features

5. The Semantic Similarity Feature
» Determines the semantic similarity of two common NPs

Two semantically similar NPs are more likely to be
coreferent than two semantically dissimilar NPs

6. The Pattern-Based Feature

» Computed using information provided by an algorithm that
learns patterns for extracting coreferent NP pairs

S Employing this pattern-based feature does not yield
significant improvement in coreference performance
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Plan for the Talk

§ Six linguistic features for coreference resolution

§ The baseline feature set

§ Evaluation
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The Baseline Feature Set (34 Features)

§ String-matching features
» Exact string match, substring match, head noun match

S Grammatical features
» Agreement w.r.t. gender, number, animacy, grammatical role

§ Positional feature
» Distance between the two NPs In sentences

§ Semantic features
» Alias, semantic class agreement
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§ Positional feature
» Distance between the two NPs In sentences

S Semantic features
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For a proper name, use a named entity finder
For a common noun, use WordNet + the first-sense heuristic 85



Plan for the Talk

§ Six linguistic features for coreference resolution

§ The baseline feature set

§ Evaluation

» How effective are the proposed features in improving the
baseline coreference system?
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Experimental Setup

§ The 2003 ACE coreference corpus
» comprises a training set and a test set

§ Two coreference scoring programs
» MUC scoring program (Vilain et al., 1995)
» CEAF scoring program (Luo, 2005)
» recall, precision, F-measure

S NPs extracted automatically

87



The Baseline Coreference System

S Feature set: the baseline feature set (34 features)
§ Learning algorithm: C4.5

§ Clustering: single-link clustering
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Results (Baseline System)

MUC Scorer CEAF Scorer
R P F R P F
Using the Baseline features only | 53.7 73.4 62.0 | 55.4 654 60.0
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How Strong are the Baseline Results?

S Replace the 34 baseline features with the 12 features
employed by Soon et al.’s (2001) system

» The first learning-based resolver that achieves performance
comparable to the best MUC coreference systems
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Results (Duplicated Soon et al. System)

MUC Scorer CEAF Scorer

R P F R P F
Using the Baseline featuresonly | 53.7 734 62.0 | 554 654 60.0
Using Soon et al.’s features only | 462 732 56.6 | 498 649 56.3
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Using the Expanded Feature Set

S Augment the baseline feature set with our six linguistic
features

» SEM_CLASS

» ACE_SEMCLASS

» SEM_SIM

» PATTERN_BASED

» ANAPHORICITY

» COREFERENTIALITY
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Using the Expanded Feature Set

S Augment the baseline feature set with our six linguistic
features

» SEM_CLASS

» ACE_SEMCLASS
» SEM_SIM

» PATTERN_BASED
» ANAPHORICITY

. COREFERENTIALITY } Requires an annotated corpus

S Remove the heuristic-based semantic class agreement
feature from the feature set
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Where does this annotated corpus come from?

§ Partition the available training texts into two sets of roughly
the same size: training subset and development subset
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Training coreference
classifier
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Where does this annotated corpus come from?

§ Partition the available training texts into two sets of roughly
the same size: training subset and development subset

Training coreference Computing
classifier ANAPHORICITY and

COREFERENTIALITY
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Results (Expanded Feature Set)

MUC Scorer CEAF Scorer

R P F R P F
Using the Baseline featuresonly | 53.7 734 62.0 | 554 654 60.0
Using Soon et al.’s features only | 462 732 56.6 | 498 649 56.3
Using the expanded feature set | 54.7 778 64.2 | 56.7 69.0 62.3
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Results (Expanded Feature Set)

MUC Scorer CEAF Scorer

R P F R P F
Using the Baseline featuresonly | 53.7 734 62.0 | 55.4 654 60.0
Using Soon et al.’s features only | 462 732 56.6 | 498 649 56.3
Using the expanded feature set | 54.7 778 64.2 | 56.7 69.0 62.3

§ Performance difference is statistically significant compared
to baseline: p=0.004 (MUC) and p=0.0016 (CEAF)
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MUC Scorer CEAF Scorer

R P F R P F
Using the Baseline featuresonly | 53.7 734 62.0 | 554 654 60.0
Using Soon et al.’s features only | 462 732 56.6 | 498 649 56.3
Using the expanded feature set | 54.7 778 64.2 | 56.7 69.0 62.3
without SEM_CLASS 55,1 775 644|561 679 614
without ACE_SEM_CLASS 534 771 63.1 | 546 672 60.2
without SEM_SIM 547 776 642 | 564 681 617
without PATTERN_BASED 55,0 778 645|562 682 61.6
without ANAPHORICITY 537 778 635|550 679 60.8
without COREFERENTIALITY 537 783 633|550 685 61.0
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Results (Expanded Feature Set)

MUC Scorer CEAF Scorer

R P F R P F
Using the Baseline featuresonly | 53.7 734 62.0 | 554 654 60.0
Using Soon et al.’s features only | 462 732 56.6 | 498 649 56.3
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Summary

S Investigated the utility of six semantic and non-morpho-
syntactic features for coreference resolution

S Showed improved performance on the ACE corpus

S Performance gains are limited in part by the difficulty in
accurately computing these features
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