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Noun Phrase Coreference

Identify all noun phrases (NPs) that refer to the same entity

Queen Elizabeth set about transforming her husband, 

King George VI, into a viable monarch. Logue, 

a renowned speech therapist, was summoned to help

the King overcome his speech impediment... 
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[Queen Elizabeth] set about transforming [her] [husband], ... 

coref ?

not coref ?

coref ?

Standard Machine Learning Approach

Aone & Bennett [1995]; Connolly et al. [1994]; McCarthy & Lehnert [1995]; 

Soon, Ng & Lim [2001]; Ng & Cardie [2002]

§ Step 1: Classification
� given a description of two noun phrases, NPi and NPj, 

classifies the pair as coreferent or not coreferent
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husband

King George VI

the King

his

Clustering 
Algorithm

Queen Elizabeth

her

Logue

a renowned 
speech therapist

Queen Elizabeth

Logue

§ Step 2: Clustering
� coordinates pairwise classification decisions

[Queen Elizabeth],

set about transforming

[her]                                

[husband]                 

... 

coref

not coref

not 

coref

King George VI

Standard Machine Learning Approach
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§ Training instance creation

Machine Learning Issues
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This Talk

§ Development of linguistic features for coreference resolution

§ Research in coreference resolution has largely adopted a 
knowledge-lean approach (Mitkov et al., 2001)
� Resolvers operate by relying on morpho-syntactic cues

n String matching, gender/number agreement, binding constraints

� However, there are coreference relations that cannot be 
identified by using string-matching facilities and syntactic cues
n Coreference relations between two lexically dissimilar common 

nouns (e.g., talks and negotiations)
n Coreference relations between a proper NP and a common NP

(e.g., George W. Bush and the president)
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Goal

§ Investigate features that encode semantic and other 
non-morpho-syntactic knowledge for improving the 
performance of a learning-based coreference system

§ Focus on inducing linguistic features
� one feature exploits the fact that we are doing ACE 

coreference
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§ Determines whether the semantic classes of two NPs agree 
� Yes for Mahatma Ghandi and the president
� No for Hyderabad and the president

§ Need to compute the semantic classes of the two NPs
� For a named entity, use a named entity recognizer
� For a common noun, use WordNet (choose the first sense)

n An overly simplistic heuristic
n Feature not used by Soon et al.’s (2001) resolver for the 

MUC-6 dataset

§ Goal: improve computation of the semantic class of an NP
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The Semantic Class Induction Algorithm

§ Given a large, unannotated corpus

� Extract appositive relations
n <Eastern Airlines, carrier>, <George Bush, president>, …

� Use a named entity (NE) recognizer to find the semantic 
classes of the proper names

� Infer the semantic class of a common nouns from the 
associated proper name
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The Semantic Class Induction Algorithm

§ Given a large, unannotated corpus

� Extract appositive relations
n <Eastern Airlines, carrier>, <George Bush, president>, …

� Use a named entity (NE) recognizer to find the semantic 
classes of the proper names

� Infer the semantic class of a common nouns from the 
associated proper name

BLLIP+Reuters

MINIPAR

Identifinder (MUC-style NER)
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§ Identifinder is not perfect
� Mislabels proper names

§ MINIPAR is not perfect
� Extracts NP pairs that are not in apposition

a common noun 
could be labeled 
with more than one 
semantic class
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Potential Problem

§ Identifinder is not perfect
� Mislabels proper names

§ MINIPAR is not perfect
� Extracts NP pairs that are not in apposition

§ Need a more robust method of inferring the semantic 
class of a common noun
1. Compute the probability that the common noun co-occurs 

with each of the named entity types
2. If the most likely NE type has a probability above 0.7, label 

the common noun with the most likely NE type

a common noun 
could be labeled 
with more than one 
semantic class
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Other Problems

§ Common nouns that do not belong to one of the seven 
MUC NE types will remain unlabeled

§ Common nouns that do not co-occur with any NE type 
with a probability above 0.7 will remain unlabeled

§ Solution: fall back on the first-sense heuristic
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§ Motivation
� The SEM_CLASS feature was developed for use in a 

general-purpose coreference system
� We may be able to improve performance on the ACE data if 

we develop an ACE-specific semantic agreement feature
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2. The ACE-Specific Semantic Agreement Feature

§ Motivation
� The SEM_CLASS feature was developed for use in a 

general-purpose coreference system
� We may be able to improve performance on the ACE data if 

we develop an ACE-specific semantic agreement feature

§ ACE coreference
� Resolve references to NPs that belong to one of the five 

ACE semantic classes (ASCs)
n PERSON, ORGANIZATION, FACILITY, GSP, LOCATION
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Definition of ACE Semantic Classes

§ PERSON (human)
� Mahatma Ghandi, the postman, …

§ ORGANIZATION (corporation, agency, government)
� Indian Institute of Technology, the company, …

§ FACILITY (man-made structure)
� Hyderabad International Convention Center, the building,  …

§ GSP (geo-political region) 
� India, Hyderabad, the city, the province, …

§ LOCATION (geographical area, landmass, body of water)
� The Bay of Bengal, the Himalayas, the mountain, …

§ Goal: develop a feature that considers two NPs compatible 
if and only if the two NPs have a common ASC
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Determining the ASC of an NP

§ Based in part on the semantic class of the NP as 
computed by the SEM_CLASS feature

§ Rough correspondence between SEM_CLASS and ASC

SEM_CLASS ASC

PERSON PERSON

ORGANIZATION ORGANIZATION
FACILITY

LOCATION GSP
LOCATION
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The ASC Determination Algorithm

§ If its SEM_CLASS is not PERSON, ORGANIZATION, or 
LOCATION, its ASC will be OTHERS

§ If its SEM_CLASS is PERSON, its ASC will be PERSON

SEM_CLASS ASC
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The ASC Determination Algorithm (Cont’)

§ If its SEM_CLASS is ORGANIZATION, need to determine 
whether its ASC is FACILITY or ORGANIZATION

� Check whether its head noun is a hypernym of an 
ORGANIZATION-related word or a FACILITY-related word

n ORGANIZATION-related words: social group
n FACILITY-related words: establishment, construction, 

building, facility, workplace

SEM_CLASS ASC
PERSON PERSON
ORG ORG, FACILITY
LOCATION GSP, LOCATION
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3. The Anaphoricity Feature

§ Anaphoricity determination is the problem of determining 
whether an NP has an antecedent or not
� Knowledge of anaphoricity could improve system precision

§ Previous approaches
� Heuristic-based : Lappin and Leass (1994), Kennedy and   

Boguraev (1996), Vieira and Poesio (2000)
� Unsupervised: Bean and Riloff (1999)
� Supervised: Evans (2001), Ng and Cardie (2002)

§ Goal: examine whether shallow anaphoricity information 
could benefit a learning-based coreference resolution
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§ Given a corpus labeled with coreference information
� Compute the anaphoricity of an NP as the probability that it 

has an antecedent in the corpus
n If the NP never appears in the corpus, set its anaphoricity

value to -1
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Computing the Anaphoricity Feature

§ Given a corpus labeled with coreference information
� Compute the anaphoricity of an NP as the probability that it 

has an antecedent in the corpus
n If the NP never appears in the corpus, set its anaphoricity

value to -1

§ Data sparseness is a problem, but the feature still 
captures some useful information
� it is only moderately anaphoric
� the contrary (from on the contrary) is never anaphoric
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4. The Coreferentiality Feature

§ Adapt the method for generating the anaphoricity feature     
to create a coreferentiality feature

§ Feature encodes the probability that two NPs are coreferent
� Estimate the probabilities from a coreference corpus

n If one or both of the given NPs do not appear in the corpus,  
set the coreferentiality value to -1
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The Remaining Features

5. The Semantic Similarity Feature
� Determines the semantic similarity of two common NPs

n Two semantically similar NPs are more likely to be 
coreferent than two semantically dissimilar NPs

6. The Pattern-Based Feature
� Computed using information provided by an algorithm that 

learns patterns for extracting coreferent NP pairs

§ Employing this pattern-based feature does not yield 
significant improvement in coreference performance
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§ Six linguistic features for coreference resolution

§ The baseline feature set

§ Evaluation
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§ String-matching features
� Exact string match, substring match, head noun match

§ Grammatical features 
� Agreement w.r.t. gender, number, animacy, grammatical role

§ Positional feature
� Distance between the two NPs in sentences

§ Semantic features
� Alias, semantic class agreement
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The Baseline Feature Set (34 Features)

§ String-matching features
� Exact string match, substring match, head noun match

§ Grammatical features
� Agreement w.r.t. gender, number, animacy, grammatical role

§ Positional feature
� Distance between the two NPs in sentences

§ Semantic features
� Alias, semantic class agreement

For a proper name, use a named entity finder                    
For a common noun, use WordNet + the first-sense heuristic
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Plan for the Talk

§ Six linguistic features for coreference resolution

§ The baseline feature set

§ Evaluation
� How effective are the proposed features in improving the 

baseline coreference system?
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Experimental Setup

§ The 2003 ACE coreference corpus
� comprises a training set and a test set

§ Two coreference scoring programs
� MUC scoring program (Vilain et al., 1995)
� CEAF scoring program (Luo, 2005)

� recall, precision, F-measure

§ NPs extracted automatically
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The Baseline Coreference System

§ Feature set: the baseline feature set (34 features)

§ Learning algorithm: C4.5

§ Clustering: single-link clustering
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 MUC Scorer CEAF Scorer 
 R P F R P F 

Using the Baseline features only 53.7 73.4 62.0 55.4 65.4 60.0 

Using Soon et al.’s features only 46.2 73.2 56.6 49.8 64.9 56.3 

Using the expanded feature set 54.7 77.8 64.2 56.7 69.0 62.3 

      without SEM_CLASS 55.1 77.5 64.4 56.1 67.9 61.4 

      without ACE_SEM_CLASS 53.4 77.1 63.1 54.6 67.2 60.2 

      without SEM_SIM 54.7 77.6 64.2 56.4 68.1 61.7 

      without PATTERN_BASED 55.0 77.8 64.5 56.2 68.2 61.6 

      without ANAPHORICITY 53.7 77.8 63.5 55.0 67.9 60.8 

      without COREFERENTIALITY 53.7 78.3 63.3 55.0 68.5 61.0 

Results (Baseline System)
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How Strong are the Baseline Results?

§ Replace the 34 baseline features with the 12 features 
employed by Soon et al.’s (2001) system
� The first learning-based resolver that achieves performance 

comparable to the best MUC coreference systems
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§ Augment the baseline feature set with our six linguistic 
features
� SEM_CLASS
� ACE_SEMCLASS
� SEM_SIM
� PATTERN_BASED
� ANAPHORICITY
� COREFERENTIALITY

Using the Expanded Feature Set
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§ Augment the baseline feature set with our six linguistic 
features
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§ Remove the heuristic-based semantic class agreement 
feature from the feature set

Using the Expanded Feature Set
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Using the Expanded Feature Set

§ Augment the baseline feature set with our six linguistic 
features
� SEM_CLASS
� ACE_SEMCLASS
� SEM_SIM
� PATTERN_BASED
� ANAPHORICITY
� COREFERENTIALITY

§ Remove the heuristic-based semantic class agreement 
feature from the feature set

Requires an annotated corpus
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Where does this annotated corpus come from?

§ Partition the available training texts into two sets of roughly 
the same size: training subset and development subset
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classifier
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Where does this annotated corpus come from?

§ Partition the available training texts into two sets of roughly 
the same size: training subset and development subset

Training coreference
classifier

Computing 
ANAPHORICITY and 
COREFERENTIALITY
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§ Performance difference is statistically significant compared 
to baseline: p=0.004 (MUC) and p=0.0016 (CEAF)
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Results (Expanded Feature Set)
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Summary

§ Investigated the utility of six semantic and non-morpho-
syntactic features for coreference resolution

§ Showed improved performance on the ACE corpus

§ Performance gains are limited in part by the difficulty in 
accurately computing these features


