
Simple and Fast Strong Cyclic

Planning for Fully-Observable

Nondeterministic Planning Problems

Jicheng Fu1, Vincent Ng2, Farokh Bastani2, and I-Ling Yen2

1The University of Central Oklahoma
2The University of Texas at Dallas

Goal

v To solve strong cyclic planning problems from a Fully-
Observable Nondeterministic planning domain

Goal

v To solve strong cyclic planning problemsfrom a Fully-
Observable Nondeterministic planning domain

Goal

v To solve strong cyclic planning problemsfrom a Fully-
Observable Nondeterministic planning domain

v A planning problemis a triple 〈s0, g, Σ〉, where
Ø s0 is the initial state,

Ø g is the goal condition, and

Ø Σ is the planning domain

Goal

v To solve strong cyclic planning problems from a Fully-
Observable Nondeterministic planning domain

Goal

v To solve strong cyclic planning problems from a Fully-
Observable Nondeterministic planning domain

v Informally, in a nondeterministic planning domain,
Ø an action may generate multiple effects

act

…

effects

Goal

v To solve strong cyclic planning problems from a Fully-
Observable Nondeterministic planning domain

v Informally, in a nondeterministic planning domain,
Ø an action may generate multiple effects

v Formally, a nondeterministic domain
Ø is a 4-tuple Σ = (P, S, A, γ)

p P is a finite set of propositions;
p S ⊆ 2P is a finite set of states in the system;
p A is a finite set of actions; and
p γ : S × A → 2S is the state-transition function

act

…

effects

Goal

v To solve strong cyclic planning problems from a Fully-
ObservableNondeterministic planning domain

Goal

v To solve strong cyclic planning problems from a Fully-
ObservableNondeterministic planning domain

v Full observability
Ø The states of the world are fully observable

Goal

v To solve strong cyclic planningproblems from a Fully-
Observable Nondeterministic planning domain

Goal

v To solve strong cyclic planningproblems from a Fully-
Observable Nondeterministic planning domain

v Strong cyclic planning
Ø refers to a particulartype of solutionsto nondeterministic

problems
Ø different from so-called weak planning

Weak Planning Solutions

v Solutions where there is a chance to achieve the goal

… …
s0 a1 g

…

Non-goal leaf states

Nondeterministic actions

In fact, non-goal
leaf states are not
part of the weak
plan!

In the weak plan,
there is no path
from a non-goal leaf
state to the goal

Strong Cyclic Planning Solutions

v Prescribe actions for all possible non-goal leaf states
Ø Find a path for each non-goal leaf state to the goal state

Ø May loop indefinitely

Ø But contain no dead-ends

Ø More difficult than finding weak planning solutions

… …
s0 a1 g

…

Then a strong
cyclic plan is
found!

Representing a Plan

v Regardless of whether a plan is weak or strong cyclic,
we can represent it as a policy π
Ø a partial function mapping states to actions

v More formally, policy π : Sπ → A
Ø consists of state action pairs (s, a) such that π(s) = a

Ø defines which action to take under state s

How to Generate a Strong Cyclic Plan

v Given a planning problem with initial state s0 and
goal state g, we employ a 3-step Basic algorithm
Ø motivated by work in Incremental contingency planning

[Dearden et al, 2003],FF-replan [Yoon, Fern, and Givan,
2007],and NDP [Kuter et al., 2008]

Basic Algorithm: Step 1

v Find a path (i.e., weak plan) from s0 to g
Ø using a classic planner

… …
s0 g

…

Basic Algorithm: Step 1

v Find a path (i.e., weak plan) from s0 to g
Ø using a classic planner

Basic Algorithm: Step 1

v Find a path (i.e., weak plan) from s0 to g
Ø using a classic planner

… …
s0 g

…

Nondeterministic actions

Basic Algorithm: Step 1

v Find a path (i.e., weak plan) from s0 to g
Ø using a classic planner

… …
s0 g

…

Nondeterministic actions

Given a nondeterministic action,
the effect included in the weak plan is its Intended Effect

Intended effects
…

Basic Algorithm: Step 1

v Find a path (i.e., weak plan) from s0 to g
Ø using a classic planner

… …
s0 g

…
Failed effects

Nondeterministic actions

Given a nondeterministic action,
the effect included in the weak plan is its Intended Effect
the effects not included in the weak plan are its Failed Effects

Intended effects
…

Basic Algorithm: Step 1

v Find a path (i.e., weak plan) from s0 to g
Ø using a classic planner

… …
s0 g

…

Nondeterministic actions

Given a nondeterministic action,
the effect included in the weak plan is its Intended Effect
the effects not included in the weak plan are its Failed Effects

Put them all in a set LIntended effects
…

…
Failed effects

Basic Algorithm: Step 2

v For every failed effect e, find a path from e to g.

Basic Algorithm: Step 2

v For every failed effect e, find a path from e to g.

… …
s0 a1 g

…

Then a strong
cyclic plan is
found!

Basic Algorithm: Step 3

v But sometimes we may encounter a dead end. In this
case, we need to backtrack

… …
s0 a1 g

…

X

s1 a2

Action a2 will be
disabled at state s1

since it leads to a
dead end

Dead-end

Basic Algorithm: Step 3

v But sometimes we may encounter a dead end. In this
case, we need to backtrack

… …
s0 a1 g

…

X

s1 a2

Action a2 will be
disabled at state s1

since it leads to a
dead endState s1 will try

some other actions
to find another
path to goal g

ak

Basic Algorithm: Application to Beam Domain

v A set of positions in one of two levels: up or down

v Goal: have the agent move from down0 to upn

v Three possible actions can be used to move around

0

0

1

1

2

2

3

3

n-1

n-1

n

n

Up

Down

Action 1: Climb

0

0

1

1

2

2

3

3

n-1

n-1

n

n

Up

Down

v Climb is deterministic
Ø it moves the agent from down0 to up0.

Ø can only be applied to down0

Action 2: Jump

v Jump is nondeterministic
Ø can be applied only to a position in the upper level

Ø if successful, agent moves to up position to its right

Ø if unsuccessful, agent moves to downposition to its right

0

0

1

1

2

2

3

3

n-1

n-1

n

n

Up

Down

Jump to up1

successfully

Fall to down1

Action 3: Moveback

v Moveback is deterministic
Ø can be applied only to a position in the lower level

Ø moves agent one step to the left

0

0

1

1

2

2

3

3

n-1

n-1

n

n

Up

Down

Applying the Basic Strong Cyclic Algorithm

v Initially, L = {down0}

v Step 1: Find a path from down0 to upn

This is a weak plan because it does
not consider the possibility of falling!

0

0

1 2 3 n-1 n… …

… …1 2 3 n-1 n1 2 3 n-1 n0

0 1 2 3 n-1 n

Applying the Basic Strong Cyclic Algorithm

v Initially, L = {down0}

v Step 1: Find a path from down0 to upn

L = {down1, down2, …, downn}, the set
of failed effects that are not considered
in the weak plan.

0

0

1 2 3 n-1 n… …

… …1 2 3 n-1 n

Applying the Basic Strong Cyclic Algorithm

v L = {down1, down2, …, downn}
v Step 2: Find a path from each position in L to upn.

v E.g., for down1, the path to upn is:

0

0

1 2 3 n-1 n… …

… …1 2 3 n-1 n1 2 3 n-1 n

Applying the Basic Strong Cyclic Algorithm

v L = {down1, down2, …, downn}
v Step 2: Find a path from each position in L to upn.

v E.g., for down2, the path to upn is:

0

0

1 2 3 n-1 n… …

… …1 2 3 n-1 n1 2 3 n-1 n

Re-explored the states that have already
been solved in the path for down1

Applying the Basic Strong Cyclic Algorithm

v L = {down1, down2, …, downn}
v Step 2: Find a path from each position in L to upn.

v E.g., for down3, the path to upn is:

0

0

1 2 3 n-1 n… …

… …1 2 3 n-1 n1 2 3 n-1 n

Re-explored the states that have already
been solved in the path for down2

The same pattern repeats for other
down positions.
Issue: Many states (e.g., down0, up0,
etc.) are repeatedly explored!

So …

v The basic algorithm can be inefficient
Ø many states can be repeatedly explored

v Goal
Ø improve the Basic algorithm w.r.t. planning efficiency

and plan size by proposingtwo extensions

Extension 1: Goal Alternative

v Observation
Ø The Basic algorithm attempts to find a path from each

failed effect to goal state g, which can be far away

v With goal alternative, we attempt to find a path from
each failed effect to an alternative goal
Ø an alternative goal is presumably closerto the associated

failed effect than the overall goal g
p could improve planning efficiency and reduce plan size

Ø each failed effect has its own alternative goal
p i.e., an alternative goal is associated with a failed effect

p we use the corresponding intended effectas alternative goal

v For each failed effect downi

Ø instead of using upn as the search goal, we use the intended
effectupi of action Jump(upi-1, upi) as the search goal

Intended Effect as Alternative Goal

0

0

1 2 3 n-1 n… …

… …1 2 3 n-1 n

Up

Down

v For each failed effect downi

Ø instead of using upn as the search goal, we use the intended
effectupi of action Jump(upi-1, upi) as the search goal

Intended Effect as Alternative Goal

0

0

1 2 3 n-1 n… …

… …1 2 3 n-1 n

Up

Down

v For each failed effect downi

Ø instead of using upn as the search goal, we use the intended
effectupi of action Jump(upi-1, upi) as the search goal

Intended Effect as Alternative Goal

0

0

1 2 3 n-1 n… …

… …1 2 3 n-1 n

Up

Down

Intended Effect as Alternative Goal

v For failed effect down1,
Ø If we use goal alternative, the intended effect up1 is the search goal

Ø If we use the ultimate goal upn as the search goal
§ The generated weak plan is lengthy

0

0

1 2 3 n-1 n

… …

… …

1 2 3 n-1 n1

0

0

1 2 3 n-1 n

… …

… …

1 2 3 n-1 n1 2 3 n-1 n

Goal Alternative: A Caveat

v It is possible that a path cannot be established
between a failed effect and its alternative goal

v If this happens, we resort to establishing a path from
the failed effect to the original goal g

Why is Goal Alternative correct?

v By definition, an intended effect is included in some
path wp to goal g, while a failed effect s is ignored in wp

v Since we have already found a path from to g, if we can
find a path from s to , then the path from s to can be
the solution to 〈s, g, Σ〉

v Hence, much effort is saved by avoiding the search from
to g.

ŝ

ŝ
ŝ ŝ

ŝ

Extension 2: State Reuse

v Observation
Ø Even if a state is solved(i.e., a path has been found from s

to the goal g), the Basic algorithm still attempts to solve it
every time it is encountered

v State reuse aims to improve planning efficiency by
not re-solvinga state
Ø When searching for a weak plan, if a solved state is

encountered, the search stops

State Reuse: Example

v For failed effect down1, goal alternative generates the plan
Ø Moveback(down1, down0); Climb(down0, up0); Jump(up0, up1)

v State reuse will make the plan even more concise
Ø Moveback(down1, down0)

0

0

1 2 3 n-1 n

… …

… …

1 2 3 n-1 n1

0

0

1 2 3 n-1 n

… …

… …

1 2 3 n-1 n1

Reached a solved state down0.
Hence, the search stops!

Note that …

v State reuse and goal alternative can be applied
independently of each other
Ø In particular, goal alternative does NOT rely on state reuse

to improve planning efficiency

v In our poster
Ø we use the blocksworld example to show that goal

alternative plays a more critical role than state reuse

Evaluation

v All problem instances belong to the benchmark
domains of the IPC2008 FOND track
Ø Blocksworld, Forest, Faults, and First-responders

v Goal
Ø compare FIP, our planner that implements the Basic

algorithm with the two extensions, against two state-
of-the-art planners, MBP and Gamer

Ø give each planner 1200 seconds to solve each problem
instance

Evaluation 1: Problem Coverage

Domain Gamer MBP FIP

blocksworld (30) 10 1 30

faults (55) 38 16 55

first-responders (100) 21 11 75

forest(90) 7 0 7

Total (275) 76 28 167

FIP solves more problems than
Gamer and MBP within the time limit

Evaluation 2: Efficiency

Problem
Gamer MBP Basic FIP

t s t t s t s

bw-1 38.748 10 3556.517 0.011 12 0.007 8
bw-2 29.215 16 --- 0.008 10 0.006 7
bw-3 32.742 21 --- 0.014 10 0.008 10
bw-4 37.186 26 --- 0.016 16 0.011 14
bw-5 37.506 13 --- 0.020 12 0.010 12
bw-6 30.847 19 --- 0.013 10 0.009 10
bw-7 32.249 28 --- 0.032 22 0.010 17
bw-8 37.944 19 --- 0.019 14 0.010 13
bw-9 28.632 10 --- 0.017 15 0.009 12
bw-10 28.650 13 --- 0.015 22 0.009 10
bw-12 --- --- --- 3.507 225 0.285 45
bw-25 --- --- --- 452.642 537 59.230 312
bw-30 --- --- --- 42.755 102 3.126 48
faults-6-6 81.695 125 --- 0.020 130 0.005 20
faults-7-7 90.996 235 --- 0.043 258 0.005 23

faults-8-8 1106.105 325 --- 0.101 514 0.007 26
faults-9-9 830.272 511 --- 0.217 848 0.007 29
faults-10-7 --- --- --- 0.816 2140 0.007 32
faults-10-10 --- --- --- 0.859 2050 0.009 32
f-r-2-3 0.142 12 63.388 0.003 11 0.003 11
f-r-4-2 0.118 8 --- 0.003 6 0.003 6

f-r-6-2 1.016 7 --- 0.003 7 0.003 7
forest-2-5 0.661 56 --- 0.007 56 0.008 56
forest-2-6 4.769 50 --- 0.008 50 0.008 50
forest-2-7 8.122 44 --- 0.007 44 0.008 44
forest-2-8 0.638 56 --- 0.007 56 0.008 56
forest-2-9 0.607 42 --- 0.006 42 0.007 42
forest-2-10 0.927 44 --- 0.007 44 0.008 44

v Comparing with the Basic Algorithm
Ø FIP is on average more than 8 times faster than Basic

Ø As the problem complexity increases, FIP could be more
than 100 times faster than Basic

Ø FIP’s plans are 3.4 times smaller than Basic on average

v Comparing with MBP and Gamer
Ø FIP is on average more than three orders of magnitude faster

Ø FIP’s plans are 2.8 times smaller than Gamer’s

Evaluation 3: Which of the two extensions

makes a more critical contribution?

Problem
FIP FIP-SR-only FIP-GA-only

t s t s t s
bw-1 0.007 8 0.010 12 0.007 8
bw-2 0.006 7 0.008 10 0.005 7
bw-3 0.008 10 0.008 10 0.010 10
bw-4 0.011 14 0.012 16 0.013 14
bw-5 0.010 12 0.014 12 0.013 12
bw-6 0.009 10 0.010 10 0.011 10
bw-7 0.010 17 0.016 22 0.015 17
bw-8 0.010 13 0.012 14 0.012 13
bw-9 0.009 12 0.009 12 0.010 15
bw-10 0.009 10 0.010 10 0.010 13
bw-12 0.285 45 0.725 131 1.216 138
bw-25 59.230 312 112.235 453 280.510 381
bw-30 3.126 48 7.458 102 7.249 48
faults-6-6 0.005 20 0.021 130 0.005 20
faults-7-7 0.005 23 0.045 258 0.006 23
faults-8-8 0.007 26 0.111 514 0.007 26
faults-9-9 0.007 29 0.246 848 0.008 29
faults-10-7 0.007 32 0.960 2140 0.008 32
faults-10-10 0.009 32 1.101 2050 0.009 32
f-r-1-8 0.002 10 0.003 10 0.003 10
f-r-2-3 0.003 11 0.003 11 0.003 11
f-r-4-2 0.003 6 0.003 6 0.003 6
f-r-6-2 0.003 7 0.003 7 0.003 7
forest-2-5 0.008 56 0.007 56 0.009 56
forest-2-6 0.008 50 0.007 50 0.009 50
forest-2-7 0.008 44 0.007 44 0.009 44
forest-2-8 0.008 56 0.007 56 0.009 56
forest-2-9 0.007 42 0.006 42 0.008 42
forest-2-10 0.008 44 0.006 44 0.009 44

FIP-SR-only: extends Basic
with state reuse only

FIP-GA-only: extends Basic
with goal alternative only

On average, FIP-GA-only
runs more than 5 times
faster than FIP-SR-only

FIP-GA-only creates plans
that are 3.4 times smaller
than FIP-SR-only.

So, goal alternative plays a
more crucial role than state
reuse in improving
planning efficiency and
reducing plan size!

Summary

v Proposed two extensions to the Basic strong cyclic
planning algorithm, goal alternativeand state reuse

v FIP significantly outperforms state-of-the-art planners
in terms of problem coverage, efficiency, and
solution size.

