Simple and Fast Strong Cyclic
Planning for Fully-Observable
Nondeterministic Planning Problems

Jicheng Ful, Vincent Ng?, Farokh Bastani?, and I-Ling Yen?

IThe University of Central Oklahoma
°The University of Texas at Dallas

Goal

v To solve strong cyclic planning problems from a Fully-
Observable Nondeterministic planning domain

Goal

v To solve strong cycliplanning problemfrom a Fully-
Observable Nondeterministic planning domain

Goal

v To solve strong cycliplanning problemfrom a Fully-
Observable Nondeterministic planning domain

v A planning problenis a triple(s,, g, 2), where
S Is the initial state,
g is the goal condition, and
2 1S the planning domain

Goal

v To solve strong cyclic planning problems from a Fully-
Observablélondeterministic planning domain

Goal

v To solve strong cyclic planning problems from a Fully-
Observablélondeterministic planning domain

v Informally, in a nondeterministic planning domain,
an action may generate multiple effects

O
< : effects
act

Goal

v To solve strong cyclic planning problems from a Fully-
Observablélondeterministic planning domain

v Informally, in a nondeterministic planning domain,
an action may generate multiple effects

O
< : effects
act

v Formally, a nondeterministic domain
Is a4-tuplex = (P, S A,))
» P s a finite set of propositions;
» SO 2P is a finite set of states in the system;
» Als a finite set of actions; and
o V. Sx A - 25is the state-transition function

Goal

v To solve strong cyclic planning problems frorfrialy-
ObservabldNondeterministic planning domain

Goal

v To solve strong cyclic planning problems frorfrialy-
ObservabldNondeterministic planning domain

v Full observability
The states of the world are fully observable

Goal

v To solvestrong cyclic planningroblems from a Fully-
Observable Nondeterministic planning domain

Goal

v To solvestrong cyclic planningroblems from a Fully-
Observable Nondeterministic planning domain

v Strong cyclic planning

refers to a particuléi/pe of solutionto nondeterministic
problems

different from so-calledveak planning

Weak Planning Solutions

v Solutions where there is a chance to achieve the g

In fact, non-goal
leaf states are not
part of the weak
plan!

O

In the weak plan,

Non-goal leaf states | there is no path

B AN
- 7 \

~ .

O) O v
/
O—~ P
.[/Q/ 2 .[-,/'/ St

Nondeterministic actions

from a non-goal leaf
state to the goal

%%Q

g

Strong Cyclic Planning Solutions

v Prescribe actions for all possible non-goal leaf stat
Find a path for each non-goal leaf state to the gjate
May loop indefinitely
But contain no dead-ends

More difficult than finding weak planning solutions
Then a strong
cyclic plan is
found!

/
O \

Representing a Plan

v Regardless of whether a plan is weak or strong cycic,
we can represent it agalicy 1
a partial function mapping states to actions

v More formally, policyr: S, - A
consists of state action paiss @) such thatfs) =a
defines which action to take under state

How to Generate a Strong Cyclic Plan

v Given a planning problem with initial steggand
goal statey, we employ &-step Basic algorithm

motivated by work irincremental contingency planning
[Deardenet al, 2003],FF-replan [Yoon, Fern, and Givan,
2007],andNDP [Kuter et al., 2008]

Basic Algorithm: Step 1

v FInd apath (i.e., weak plan) frons, to g
using a classic planner

Basic Algorithm: Step 1

v FInd apath (i.e., weak plan) frons, to g
using a classic planner

o me < ______

Basic Algorithm: Step 1

v FInd apath (i.e., weak plan) frons, to g
using a classic planner

O @
O <i} < S
So N,

Nondeterministic actions

Basic Algorithm: Step 1

v FInd apath (i.e., weak plan) frons, to g
using a classic planner

Given a nondeterministic action,
the effect included in the weak plan is its

® @
O O v o ..

S

Nondeterministic actions

Basic Algorithm: Step 1

v FInd apath (i.e., weak plan) frons, to g
using a classic planner

Given a nondeterministic action,
the effect included in the weak plan is its
the effects not included in the weak plan are its Failed Effects

Intended effects Failed effects

L~ . .
\' \'\. - ./ | N

~. .-

Nondeterministic actions

Basic Algorithm: Step 1

v FInd apath (i.e., weak plan) frons, to g

using a classic planner

Given a nondeterministic action,
the effect included in the weak plan is its
the effects not included in the weak plan

are its Failed Effects

Intended effects Failed effects

e—=Put them all in a set L

o~]
Nl R '~

S

Nondeterministic actions

Basic Algorithm: Step 2

v For every falled effea, find a path froneto g.

Basic Algorithm: Step 2

v For every falled effea, find a path froneto g.

Then a strong
cyclic plan is
found!

Basic Algorithm: Step 3

v But sometimes we may encounter a dead end. In t
case, we need tmacktrack

Action a, will be
disabled at state s,
since it leads to a

dead end
O
(;0 . 051 az\ e O
X

Dead-end

Basic Algorithm: Step 3

v But sometimes we may encounter a dead end. In t
case, we need tmacktrack

Action a, will be
disabled at state s,
since it leads to a

State s, will try dead end
some other actions

to find another
path to goal g

O e
O Q, l< J -~ B—@
Sy a, 1 a-,

O O g

Basic Algorithm: Application to Beam Domain

v A set ofpositionsin one of two levelsup or down

v Goal: have the agent move frodown, to up,
v Threepossible actions can be used to move around

Action 1: Climb

v Climb Is deterministic
It moves the agent from dowyto up,.
can only be applied to doyn

Action 2: Jump

v Jump isnondeterministic
can be applied only to a position in the upperlleve
If successfylagent moves top position to its right
If unsuccessfilagent moves toown position to its right

/7 Jump to up,

successfully

5006 00 @
- JolloNoENcNORE

Fall to down,

Action 3: Moveback

v Moveback is deterministic
can be applied only to a position in the lower leve
moves agent one step to the left

©
O

Applying the Basic Strong Cyclic Algorithm

v Initially, L = {down}
v Step 1: Find a path frontlowny, to up,

This is a weak plan because it does
not consider the possibility of falling!

Applying the Basic Strong Cyclic Algorithm

v Initially, L = {down}
v Step 1: Find a path frontlowny, to up,

L = {down,, down,, ..., down, }, the set

of failed effects that are not considered
in the weak plan.
\ ~ Ii |

Applying the Basic Strong Cyclic Algorithm

v L = {down,, down,, ..., down,}
v Step 2: Find a path froneach position inL to up,.
v E.g., fordown,, the path taip, is:

Applying the Basic Strong Cyclic Algorithm

v L = {down,, down,, ..., down,}
v Step 2: Find a path froneach position inL to up,.
v E.g., fordown,, the path taip, is:

Re-explored the states that have already
been solved in the path for down1

Applying the Basic Strong Cyclic Algorithm

v L = {down,, down,, ..., down,}
v Step 2: Find a path froneach position inL to up,.
v E.g., fordown,, the path taip, is:

Re-explored the states that have already
been solved in the path for down,

D @ B M. @ D

~ The same pattern repeats for other
down positions.

Issue: Many states (e.g., down,, up,,
etc.) are repeatedly explored!

A A

So...

v The basic algorithm can lbeefficient
many states can be repeatedly explored

v Goal

Improve the Basic algorithm w.rlanning efficiency
andplan sizeby proposingwo extensions

Extension 1: Goal Alternative

v Observation

The Basic algorithm attempts to find a path frorohea
failed effect to goal statg which can be far away

v With goal alternative, we attempt to find a path fro
each failed effect to amiternative goal

an alternative goal isresumably closdo the associated
failed effect than the overall goal

» could improve planning efficiency and reduce plan size
each failed effect has itsvn alternative goal

> 1.e., an alternative goal is associated with a failed effect

» we use the correspondingended effecas alternative goal

Intended Effect as Alternative Goal
v For each failed effectown,

Instead of usingip,, as the search goal, we use tthiended
effectup, of action Jumpgp, ,, up;) as the search goal

Down

Intended Effect as Alternative Goal
v For each failed effectown,

Instead of usingip,, as the search goal, we use tthiended
effectup, of action Jumpgp, ,, up;) as the search goal

Down

Intended Effect as Alternative Goal
v For each failed effectown,

Instead of usingip,, as the search goal, we use tthiended
effectup, of action Jumpgp, ,, up;) as the search goal

Down

Intended Effect as Alternative Goal

v For failed effecdown,,
f we use goal alternative, the intended eftawtis the search goal

......) O

If we use thaultimate goal up,, as the search goal
S The generated weak plan is lengthy

Goal Alternative: A Caveat

v It Is possible that a path cannot be established
between a failed effect and its alternative goal

v If this happens, we resort to establishing a path fro
the failed effect to the original goagl

Why is Goal Alternative correct?

v By definition, an intended effeét is included in some
pathwp to goalg, while a failed effecsis ignored inwp

v Since we have already found a path flomg,tth we can
find a path fronsto ¢, then the path fromto § can be

the solution tgs, g, 2)

v Hence, much effort is saved by avoiding the search$ro
tog.

Extension 2: State Reuse

v Observation

Even If a state isolved(i.e., a path has been found frem
to the goab), the Basic algorithm still attempts to solve it
every time it is encountered

v State reuse aims to improve planning efficiency by
not re-solvinca state

When searching for a weak plan, if a solved state |
encountered, the search stops

State Reuse: Example

v For failed effecdown,, goal alternative generates the plan
Moveback@own,, down,); Climb(down,, up,); Jump(p,, up,)

A
OO & @) O
INe 200

@State r%e will make the plan even more concise

Moveback@own.. down.)
Reached a solved state down,.
Hence, the search stops!

O © & . @) ()

® © O @ ©
A

Note that ...

v State reuse and goal alternative can be applied
iIndependently of each other

In particular, goal alternative does NOT rely omistreuse
to improve planning efficiency

v In our poster

we use the blocksworld example to show that goal
alternative plays a more critical role than statgese

Evaluation

v All problem instances belong to the benchmark
domains of the IPC2008 FOND track

Blocksworld, Forest, Faults, and First-responders

v Goal

compare FIP, our planner that implements the Basic
algorithm with the two extensions, against two state-
of-the-art planners, MBP and Gamer

give each planner 1200 seconds to solve each probl
Instance

Evaluation 1: Problem Coverage

Domain Gamer MBP FIP
blocksworld (30) 10 1 30
faults (55) 38 16 55
first-responders (100) 21 11 75
forest(90) 7 0) 7
Total (275) 76 28 167

FIP solves more problems than

Gamer and MBP within the time limit

Evaluation 2: Efficiency

Gamer MBP Basic FIP

Problem t s t t s t s

pw-1 38.748 10 3556517 | 0.011 12 0.007 8

v Comparing with the Basic Algorithm
FIP is on average more than 8 times faster tharcBas

As the problem complexity increases, FIP could loeem
than 100 times faster than Basic

FIP’s plans are 3.4 times smaller than Basic omaayee

faults-8-8 1106.105 325 --- 0.101 514 0.007 Zt
2

QQQQQQ £11 Z QAQ N NN

v Comparing with MBP and Gamer
FIP is on average more than three orders of madmiaster
FIP’s plans are 2.8 times smaller than Gamer’s

forest-2-8 0.638 56 --- 0.007 56 0.008 56
forest-2-9 0.607 42 --- 0.006 42 0.007 42
forest-2-10 0.927 44 --- 0.007 44 0.008 44

-

Evaluation 3: Which of the two extensions
makes a more critical contribution?

FIP-SR-only: extends Basic
with state reuse only

FIP-GA-only: extends Basic
with goal alternative only

FIP FIP-SR-only FIP-GA-only
Problem n S N S N S
bw-1 0.007 8 0.010 12 0.007 8
bw-2 0.006 7 0.008 10 0.005 7
bw-3 0.008 10 0.008 10 0.010| 10
bw-4 0.011 14 0.012 16 0.013(14
bw-5 0.010 12 0.014 12 0.013 12
bw-6 0.009 10 0.010 10 0.011| 10
bw-7 0.010 17 0.016 22 0.015] 17
bw-8

o] S0, goal alternative plays a

bw-1(

> more crucial role than state
v reuse in improving

On average, FIP-GA-only
runs more than 5 times
faster than FIP-SR-only

FIP-GA-only creates plans
that are 3.4 times smaller
than FIP-SR-only.

bw-3(

iy planning efficiency and
faults 3 -

ity reducing plan size!

au

faults-10-7 0.007 32 0.960 2140 0.008 32
faults-10-10 0.009 32 1.101 2050 0.009 32
f-r-1-8 0.002 10 0.003 10 0.003 10
f-r-2-3 0.003 11 0.003 11 0.003 11
f-r-4-2 0.003 6 0.003 6 0.003 6
f-r-6-2 0.003 7 0.003 7 0.003 7
forest-2-5 0.008 56 0.007 56 0.009 56
forest-2-6 0.008 50 0.007 50 0.009 50
forest-2-7 0.008 44 0.007 44 0.009 44
forest-2-8 0.008 56 0.007 56 0.009 56
forest-2-9 0.007 42 0.006 42 0.008 42
forest-2-10 0.008 44 0.006 44 0.009 44

Summary

v Proposed two extensions to the Basic strong cyclic
planning algorithmgoal alternativandstate reuse

v FIP significantly outperforms state-of-the-art plann
In terms of problem coverage=fficiency, and
solution size

