
Two Extensions

Extension 1: State Reuse

Observation 1: the first three actions in Weak Plan 2 yield the

same state (call it s) as the first four actions in Weak Plan 1

Observation 2: since s is already solved in Weak Plan 1, there

is no need to try to find a path from s to g in Weak Plan 2

Given these observations, state reuse aims to improve efficiency

by stopping the search as soon as a solved state is reached

Extension 2: Goal Alternative

Observation: To handle a failed effect (e.g., b2 falling onto the

table for action PICK-UP b2 b1), instead of establishing a path to

the ultimate goal g (as in the Basic algorithm), we can try to

establish a path to intended effect of PICK-UP b2 b1, i.e.,

holding b2

The plan contains a single action, PICK-UP-FROM-TABLE b2

Planning efficiency is improved and plan size is reduced!

However, if a path to the intended effect cannot be found, we can

then try to establish a path to the original goal g.

This is the goal alternative heuristic: it aims to improve planning

efficiency and reduce plan size by searching for an alternative,

presumably closer goal, the intended effect of an action, and

backing off to the original goal if needed

Evaluation

Goal: Evaluate FIP, which implements the Basic algorithm

together with our two extensions, on problem instances from 4

domains in the IPC2008 FOND track

Blocksworld, faults, first-responders, forest

Compared against two state-of-the-art planners: Gamer & MBP

Results and Discussion

FIP has a better problem coverage than Gamer & MBP [Table 1]

Gamer & MBP cannot solve more than 10 problems in Blocksworld

FIP can solve all problems efficiently (cutoff time 1,200 seconds)

FIP outperforms other

planners w.r.t. CPU time t

(expressed in seconds) and

solution size s (expressed in

the number of states in the

solution policy) [Table 2]

Simple and Fast Strong Cyclic Planning for Fully-
Observable Nondeterministic Planning Problems

Jicheng Fu1, Vincent Ng2, Farokh Bastani2, and I-Ling Yen2

1The University of Central Oklahoma 2The University of Texas at Dallas

Problem

Find strong cyclic solutions to Fully-Observable

Nondeterministic (FOND) planning problems

Related Concepts

In nondeterministic planning

an action may generate multiple effects

In fully-observable planning

the states of the world are fully observable

More challenging than finding weak plans

Weak plans: only need to establish one path from the initial

state to the goal state

Strong cyclic plans: need to establish one path from each

state reachable from the initial state to the goal state

Example: Given initial state s0 and goal g,

the green path is a weak plan, since it is one path from s0 to g

in strong cyclic planning, we also need to find a path from

each red state to g

An outcome of an action that is included in the weak plan (i.e.,

a green state) is its intended effect

An outcome of an action that is not included in the weak plan

(i.e., a red state) is a failed effect of the action

Basic Strong Cyclic Algorithm

3 steps

1. Generate a weak plan from s0 to g.

2. For each failed effect e, recursively find a weak plan from e to g.

3. If a dead end is met (i.e., no path leads to g from it), then

backtrack (i.e., disable the action that leads to the dead end

and try another path)

Example: Blocksworld

To generate a strong cyclic plan:

Step 1: Find a weak plan from s0 to g

Step 2: Since action PICK-UP b2 b1 may generate the failed

effect of dropping b2 onto the table, we generate a weak plan

from this failed effect to g

Step 3: Since no dead-ends are found, no backtrack is needed

This Basic algorithm is inefficient

Certain states are repeatedly explored: the last two actions of

Weak Plan 1 and Weak Plan 2 are identical.

Goal: Improve the efficiency of the Basic algorithm by proposing

two extensions

The University of Texas at Dallas

• PICK-UP b5 b4;
• PICK-UP-FROM-TABLE b2;
• PUT-ON-BLOCK b2 b5

b3

b1

b2
b4

b5

b3

b1

b5
b4

b2

• PICK-UP-FROM-TABLE b2

… …
s0 a1 g

…

Failed effects

Nondeterministic actions

b3

b1

b2

b4

b5

• PICK-UP b2 b1;
• PUT-ON-BLOCK b2 b5;
• PICK-TOWER b2 b5 b4;
• PUT-TOWER-DOWN b2 b5;

action

…

effects

b3

b1

b2

b4

b5

b3

b1

b2
b4

b5

b3

b1

b2

b4

b5

b5

b2

b1

b4 b3

Initial state (s0) Goal state (g)

• PICK-UP b2 b1;
• PUT-ON-BLOCK b2 b5;
• PICK-TOWER b2 b5 b4;
• PUT-TOWER-DOWN b2 b5;
• PICK-UP b1 b3;
• PUT-ON-BLOCK b1 b2

Weak Plan 1

• PICK-UP b5 b4;
• PICK-UP-FROM-TABLE b2;
• PUT-ON-BLOCK b2 b5;
• PICK-UP b1 b3;
• PUT-ON-BLOCK b1 b2

b3

b1

b2 b4

b5

b5

b2

b1

b4 b3

Weak Plan 2

Domain Gamer MBP Basic FIP

blocksworld (30) 10 1 30 30

faults (55) 38 16 55 55

first-responders (100) 21 11 75 75

forest(90) 7 0 7 7

Total (275) 76 28 167 167

Problem
Gamer MBP Basic FIP

t s t t s t s

bw-1 38.748 10
3556.51

7
0.011 12 0.007 8

bw-5 37.506 13 --- 0.020 12 0.010 12

bw-10 28.650 13 --- 0.015 22 0.009 10

bw-12 --- --- --- 3.507 225 0.285 45

bw-25 --- --- --- 452.642 537 59.230 312

bw-30 --- --- --- 42.755 102 3.126 48

faults-7-7 90.996 235 --- 0.043 258 0.005 23

faults-8-8 1106.105 325 --- 0.101 514 0.007 26

faults-9-9 830.272 511 --- 0.217 848 0.007 29

faults-10-10 --- --- --- 0.859 2050 0.009 32

f-r-2-3 0.142 12 63.388 0.003 11 0.003 11

f-r-4-2 0.118 8 --- 0.003 6 0.003 6

f-r-6-2 1.016 7 --- 0.003 7 0.003 7

forest-2-6 4.769 50 --- 0.008 50 0.008 50

forest-2-7 8.122 44 --- 0.007 44 0.008 44

forest-2-8 0.638 56 --- 0.007 56 0.008 56

forest-2-9 0.607 42 --- 0.006 42 0.007 42

forest-2-10 0.927 44 --- 0.007 44 0.008 44
Table 1

Table 2

