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� But … there has been extensive prior work on using 
syntactic features for coreference resolution
� Binding Constraints
� Syntactic salience
� …
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� tree-based features
� trees as structured features

� rather than design heuristics to extract features from a parse 
tree, use the tree itself directly as a feature

� But … there has been work on using structured features to 
train an SVM for coreference resolution
� Yang et al. (2006), Versley et al. (2008), Zhou & Kong (2009)



So, what’s new?

� To understand the contributions of our work, we need to first 
understand the current state of coreference research
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The Standard Approach to Coreference

� Process each NP in a text in a left-to-right manner. 
� For each NP encountered, perform 2 steps:

1. determine whether the NP has an antecedent
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2. if so, identify an antecedent for it
(Antecedent Selection )



The Standard Approach to Coreference

� Both steps have been implemented using machine learning

� For antecedent selection ,
� numerous supervised coreference models have been designed

� the most commonly used model: the mention -pair model
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� the most commonly used model: the mention -pair model
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� Each training instance corresponds to two NPs
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(husband, Queen Elizabeth,    ) 
(husband, her,    )                    



The Mention-Pair Model is Weak

� Limited expressiveness
� information extracted from two NPs may not be sufficient for 

making an informed coreference decision

Can’t determine which candidate antecedent is the b est
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� Can’t determine which candidate antecedent is the b est
� only determine how good a candidate is relative to NP to be 

resolved, not how good it is relative to the others



How to Improve Model Expressiveness?

� Train a classifier that determines whether an NP belongs to 
a preceding coreference cluster

� Each training instance corresponds to an NP and a 
preceding cluster of NPs

24



How to Improve Model Expressiveness?

� Train a classifier that determines whether an NP belongs to 
a preceding coreference cluster

� Each training instance corresponds to an NP and a 
preceding cluster of NPs

Queen Elizabeth set about transforming her husband, 

25

Queen Elizabeth set about transforming her husband, 

King George VI, into a viable monarch.



� Train a classifier that determines whether an NP belongs to 
a preceding coreference cluster

� Each training instance corresponds to an NP and a 
preceding cluster of NPs

How to Improve Model Expressiveness?

Queen Elizabeth set about transforming her husband, 

26

Queen Elizabeth set about transforming her husband, 

King George VI, into a viable monarch.

(her, [Queen Elizabeth],    )  



� Train a classifier that determines whether an NP belongs to 
a preceding coreference cluster

� Each training instance corresponds to an NP and a 
preceding cluster of NPs

Queen Elizabeth set about transforming her husband, 

How to Improve Model Expressiveness?

27

Queen Elizabeth set about transforming her husband, 

King George VI, into a viable monarch. 

(her, [Queen Elizabeth],    )  
(husband, [Queen Elizabeth, her],    ) 



� Train a classifier that determines whether an NP belongs to 
a preceding coreference cluster

� Each training instance corresponds to an NP and a 
preceding cluster of NPs

Queen Elizabeth set about transforming her husband, 

How to Improve Model Expressiveness?

28

Queen Elizabeth set about transforming her husband, 

King George VI, into a viable monarch. 
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How to Improve Model Expressiveness?

� This model is more expressive than the mention-pair model
� can employ cluster-level features defined over any subset of 

NPs in a preceding cluster

� But … it does not address the problem of the model’s failure 
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� But … it does not address the problem of the model’s failure 
to compare candidate antecedents and identify the best one



How to Identify the Best Antecedent?

� Train a model to impose a ranking on the candidate 
antecedents for an NP to be resolved
� it assigns the highest rank to the correct antecedent 

� Each training instance corresponds to an NP to be resolved 
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� Each training instance corresponds to an NP to be resolved 
and one of its candidate antecedents

Denis & Baldridge (2007, 2008), Iida et al. (2009), …

“her” has only one candidate antecedent; nothing to rank
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and one of its candidate antecedents
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Queen Elizabeth set about transforming her husband, 
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� Each training instance corresponds to an NP to be resolved 
and one of its candidate antecedents

Denis & Baldridge (2007, 2008), Iida et al. (2009), …

Queen Elizabeth set about transforming her husband, 

King George VI, into a viable monarch.

“King George VI” has three candidate antecedents, has 
something to rank, so generate three training instances:
(King George VI, Queen Elizabeth, low)
(King George VI, her, low)
(King George VI, husband, high)

A learner will learn to 
compare all 
candidate 
antecedents in each 
ranking problem in 
the training set



How to Identify the Best Antecedent?

� addresses the problem of identifying the best candidate 
antecedent

� But … it does not address the expressiveness problem
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� But … it does not address the expressiveness problem



So …

� To combine the best of both worlds, we train a ranker that
ranks preceding clusters, not candidate antecedents
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Cluster-Ranking Model

� A ranker trained to rank preceding clusters

� Each training instance corresponds to an NP to be resolved 
and a preceding cluster
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Rahman & Ng (2009)

Queen Elizabeth set about transforming her husband, 

King George VI, into a viable monarch.

Has only one preceding cluster; nothing to rank
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Rahman & Ng (2009)

Queen Elizabeth set about transforming her husband, 

King George VI, into a viable monarch.

“husband” has one preceding cluster, [Queen Elizabeth, her], 
so nothing to rank
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� Weakness of this pipeline architecture
� Errors in anaphoricity determination will propagate to the 

antecedent selection component

� This weakness can be addressed by jointly learning 
anaphoricity determination and antecedent selection



Joint Learning for Anaphoricity 

Determination and Antecedent Selection

� Need to ensure that the ranker is given the option to 
determine an NP as not having an antecedent

47



Joint Learning for Anaphoricity 

Determination and Antecedent Selection

� Need to ensure that the ranker is given the option to 
determine an NP as not having an antecedent
� Easy. Simply create an additional instance for each ranking 

problem that corresponds to the “null” cluster
� Selecting the “null” cluster amounts to determining that an NP 

48

does not have an antecedent



Joint Learning for Anaphoricity 

Determination and Antecedent Selection

� Need to ensure that the ranker is given the option to 
determine an NP as not having an antecedent
� Easy. Simply create an additional instance for each ranking 

problem that corresponds to the “null” cluster
� Selecting the “null” cluster amounts to determining that an NP 

49

does not have an antecedent

Queen Elizabeth set about transforming her husband, 

King George VI, into a viable monarch.

Has two preceding clusters, has something to rank, so generate 
two instances:
(King George VI, [Queen Elizabeth, her], low)
(King George VI, [husband], high)



Joint Learning for Anaphoricity 

Determination and Antecedent Selection

� Need to ensure that the ranker is given the option to 
determine an NP as not having an antecedent
� Easy. Simply create an additional instance for each ranking 

problem that corresponds to the “null” cluster
� Selecting the “null” cluster amounts to determining that an NP 

50

does not have an antecedent

Queen Elizabeth set about transforming her husband, 

King George VI, into a viable monarch.

Has two preceding clusters, has something to rank, so generate 
two instances:
(King George VI, [Queen Elizabeth, her], low)
(King George VI, [husband], high)
(King George VI, null, low)



Joint Learning for Anaphoricity 

Determination and Antecedent Selection

� Incorporating joint learning into the cluster-ranking model 
yields the joint cluster-ranking model
� a state-of-the-art supervised coreference model
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Goal

� Employ path-based features and tree-based structured 
features to improve learning-based coreference systems
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What’s new?

� We use structured features to improve anaphoricity 
determination (in particular, to identify non-anaphoric NPs)
� Prior work aims to use them to improve antecedent selection

� We use structured features to improve the joint cluster 
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� We use structured features to improve the joint cluster 
ranking model
� Prior work aims to use them to improve the mention-pair model
� We know how to employ structured features to train a classifier

� but … it’s not immediately clear how to do so in a ranking model
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Mention-Pair Model?
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� Step 0: Recast ranking as classification
� Step 1: Compute the similarity between two instances

� Compute similarity over their flat features (using a linear kernel)
� Compute similarity over their trees (using a tree kernel)
� Combine the two similarity values using a composite kernel

� Step 2: Learn using an off-the-shelf SVM learner

Cluster -based flat 
features (e.g., 

gender agreement)

Structured feature (a 
simplified parse tree or 
a parse substructure)

To improve 
generalizability

corresponding 
to null cluster)
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Recasting Ranking as Classification

� Idea: convert the problem of ranking m objects into a set of 
pairwise ranking problems

� Train a model that ranks two objects (in our case, two 
preceding clusters) at a time
� Pairwise ranking is essentially a binary classification problem
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� Pairwise ranking is essentially a binary classification problem



The story so far …

� We have talked about how to incorporate tree-based 
(structured) features into the cluster-ranking model

� We haven’t talked about path-based features …
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What is a Path-Based Feature?

� encodes the contextual relationship between an NP to be 
resolved and a candidate antecedent

� represented as the shortest sequence of nodes in the parse 
tree that need to be traversed in order to reach the candidate 
antecedent from the NP to be resolved
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antecedent from the NP to be resolved

� If the NP to be resolved and its candidate antecedent are in 
different sentences, we create an additional “root” node 
connecting the parse trees of the sentences they reside in



Path-Based Features (Cont’)

� include in the feature set only those path-based features 
seen at least seven times in the training set 

� Given an instance involving an NP and a preceding cluster, 
the value of a path-based feature is 1 if the path between the 
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the value of a path-based feature is 1 if the path between the 
NP and any of the NPs in the preceding cluster is the same 
as the path represented by the feature
� Otherwise, its feature value is 0



Evaluation

� Goal
� Evaluate the effectiveness of path-based and tree-based 

(structured) features in improving the cluster-ranking model
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Experimental Setup

� Coreference data set
� 147 Switchboard dialogues (Nissim et al., 2004)

� 117 for training, 30 for test

� Baseline coreference systems
� cluster-ranking model (Rahman & Ng, 2009)
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� cluster-ranking model (Rahman & Ng, 2009)
� mention-pair model (Soon et al., 2001)
� employs 39 features

� neither of them uses path-based and tree-based features

� trained using SVMlight

� Use manually annotated NPs

� Scoring programs
� B3 (Bagga & Baldwin, 1998), φ3-CEAF (Luo, 2005)



B3 CEAF 
 

R P F 
% err. 
red. F 

% err. 
red. 

Baseline Mention-Pair model 78.1 61.6 69.1 --- 62.8 --- 

Baseline Cluster-Ranking model 71.1 78.2 74.5 --- 68.5 --- 

Cluster ranking + paths 76.4 75.2 75.8 (5.1) 70.6 (6.7) 

Baseline Systems: Results
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Cluster ranking + paths 76.4 75.2 75.8 (5.1) 70.6 (6.7) 

Cluster ranking + unigrams + trees 75.1 76.0 75.5 (3.9) 70.4 (6.0) 

Cluster ranking + paths + unigrams + trees 76.6 76.8 76.7 (8.6) 72.2 (11.7) 

Cluster ranking + paths + unigrams 76.3 75.4 75.8 (5.9) 71.4 (9.5) 
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Cluster ranking + unigrams + trees 75.1 76.0 75.5 (3.9) 70.4 (6.0) 

Cluster ranking + paths + unigrams + trees 76.6 76.8 76.7 (8.6) 72.2 (11.7) 

Cluster ranking + paths + unigrams 76.3 75.4 75.8 (5.9) 71.4 (9.5) 
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Cluster ranking + paths 76.4 75.2 75.8 (5.1) 70.6 (6.7) 

Cluster ranking + unigrams + trees 75.1 76.0 75.5 (3.9) 70.4 (6.0) 

Cluster ranking + paths + unigrams + trees 76.6 76.8 76.7 (8.6) 72.2 (11.7) 

Cluster ranking + paths + unigrams 76.3 75.4 75.8 (5.9) 71.4 (9.5) 
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Cluster ranking + paths 76.4 75.2 75.8 (5.1) 70.6 (6.7) 

Cluster ranking + unigrams + trees 75.1 76.0 75.5 (3.9) 70.4 (6.0) 
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Cluster ranking + paths 76.4 75.2 75.8 (5.1) 70.6 (6.7) 

Cluster ranking + unigrams + trees 75.1 76.0 75.5 (3.9) 70.4 (6.0) 

Cluster ranking + paths + unigrams + trees 76.6 76.8 76.7 (8.6) 72.2 (11.7) 

Cluster ranking + paths + unigrams 76.3 75.4 75.8 (5.9) 71.4 (9.5) 
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% err. 
red. 

Baseline Mention-Pair model 78.1 61.6 69.1 --- 62.8 --- 

Baseline Cluster-Ranking model 71.1 78.2 74.5 --- 68.5 --- 

Cluster ranking + paths 76.4 75.2 75.8 (5.1) 70.6 (6.7) 
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Cluster ranking + paths 76.4 75.2 75.8 (5.1) 70.6 (6.7) 

Cluster ranking + unigrams + trees 75.1 76.0 75.5 (3.9) 70.4 (6.0) 

Cluster ranking + paths + unigrams + trees 76.6 76.8 76.7 (8.6) 72.2 (11.7) 

Cluster ranking + paths + unigrams 76.3 75.4 75.8 (5.9) 71.4 (9.5) 
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Cluster ranking + paths 76.4 75.2 75.8 (5.1) 70.6 (6.7) 
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Cluster ranking + paths 76.4 75.2 75.8 (5.1) 70.6 (6.7) 

Cluster ranking + unigrams + trees 75.1 76.0 75.5 (3.9) 70.4 (6.0) 

Cluster ranking + paths + unigrams + trees 76.6 76.8 76.7 (8.6) 72.2 (11.7) 

Cluster ranking + paths + unigrams 76.3 75.4 75.8 (5.9) 71.4 (9.5) 
 

 

� The cluster-ranking model outperforms the mention-pair model
� Improvements via path-based and tree-based features, if any, will 

be measured with respect to the cluster-ranking baseline
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Cluster ranking + paths 76.4 75.2 75.8 (5.1) 70.6 (6.7) 

Cluster ranking + unigrams + trees 75.1 76.0 75.5 (3.9) 70.4 (6.0) 

Cluster ranking + paths + unigrams + trees 76.6 76.8 76.7 (8.6) 72.2 (11.7) 

Cluster ranking + paths + unigrams 76.3 75.4 75.8 (5.9) 71.4 (9.5) 
 

 � F-measure increases by 1.3 (B3) and 2.1 (CEAF)

� % err. red. : % of error reduction of a system relative to CR baseline
� Relative error reduced by 5.1% (B3) and 6.7% (CEAF) 



Incorporating Tree-Based Features
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Cluster ranking + paths 76.4 75.2 75.8 (5.1) 70.6 (6.7) 

Cluster ranking + trees 75.1 76.0 75.5 (3.9) 70.4 (6.0) 

Cluster ranking + paths + trees 76.6 76.8 76.7 (8.6) 72.2 (11.7) 

Cluster ranking + paths + unigrams 76.3 75.4 75.8 (5.9) 71.4 (9.5) 
 

 

� F-measure increases by 1.0 (B3) and 1.9 (CEAF)
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� F-measure increases by 2.2 (B3) and 3.7 (CEAF)
� equivalent to an error reduction of 8.6% (B3) and 11.7% (CEAF)

Cluster ranking + paths 76.4 75.2 75.8 (5.1) 70.6 (6.7) 

Cluster ranking + trees 75.1 76.0 75.5 (3.9) 70.4 (6.0) 

Cluster ranking + paths + trees 76.6 76.8 76.7 (8.6) 72.2 (11.7) 

Cluster ranking + paths + unigrams 76.3 75.4 75.8 (5.9) 71.4 (9.5) 
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� F-measure increases by 2.2 (B3) and 3.7 (CEAF)
� equivalent to an error reduction of 8.6% (B3) and 11.7% (CEAF)

� Better results are obtained when the two types of features are 
applied in combination

Cluster ranking + paths 76.4 75.2 75.8 (5.1) 70.6 (6.7) 

Cluster ranking + trees 75.1 76.0 75.5 (3.9) 70.4 (6.0) 

Cluster ranking + paths + trees 76.6 76.8 76.7 (8.6) 72.2 (11.7) 

Cluster ranking + paths + unigrams 76.3 75.4 75.8 (5.9) 71.4 (9.5) 
 

 



Summary

� Examined the effectiveness of tree-based and path-based 
features in improving the joint cluster-ranking model
� when they were applied in combination, we saw a reduction in 

relative error by 8.6-11.7% on Switchboard dialogues
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� Enabled flat and structured features to be used 
simultaneously in a ranking model that employs joint learning  


