Human Language Technology Research Institute

Chinese Event Coreference Resolution: Understanding the State of the Art

Chen Chen and Vincent Ng

Human Language Technology Research Institute
The University of Texas at Dallas

Event Coreference

 Goal: Determine which event mentions in a text refer to the same real-world event

Event Coreference

 Goal: Determine which event mentions in a text refer to the same real-world event

Since there is few work on event coreference, our understanding of this task is fairly limited!

Goal

 Understand how a state-of-the-art end-to-end event coreference resolver can be improved

Goal

- Understand how a state-of-the-art end-to-end event coreference resolver can be improved
 - Question 1: To what extent is the noise inherent in the output of each of its upstream components limiting the performance?

Goal

- Understand how a state-of-the-art end-to-end event coreference resolver can be improved
 - Question 1: To what extent is the noise inherent in the output of each of its upstream components limiting the performance?
 - Question 2: What are the major types of errors that are attributable to the resolution algorithm?

Why Chinese Event Coreference Resolution

- Lack of publicly available results on Chinese event coreference resolution
 - Most of recent work on event coreference are for English
 - Humphreys at el.(1997), Chen et al.(2009), Bejan and Harabagiu(2010), Chen et al.(2011), Lee et al.(2012)

Plan for the Talk

- ACE Event Coreference
- Six Upstream Components in the Pipeline
- Results and Analysis Answer to Question 1
- Conclusion

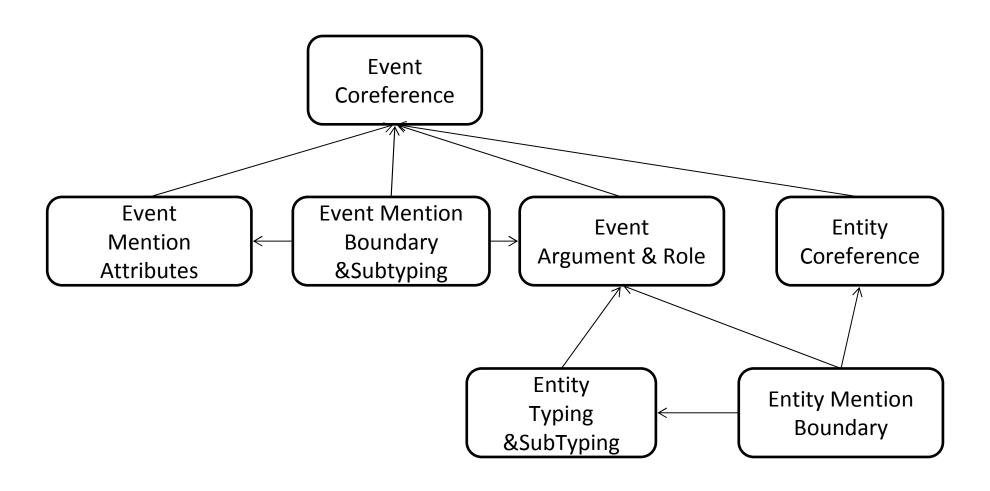
Plan for the Talk

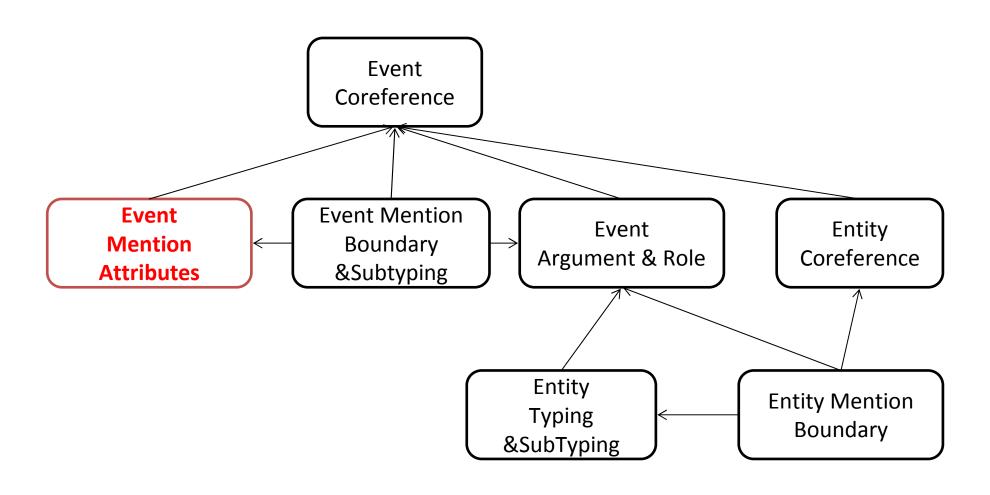
- ACE Event Coreference
- Six Upstream Components in the Pipeline
- Results and Analysis Answer to Question 1
- Conclusion

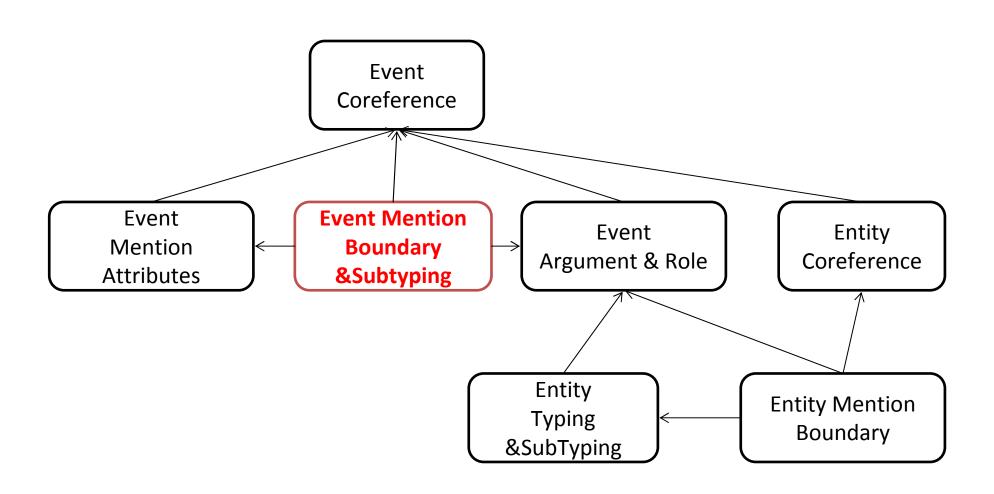
(Zhang Jiarong) was cycling on (the road) (yesterday evening) and was [injured] when (two men) [stabbed] (him) with (a knife). (The thugs)' [criminal] motivation may have something to do with (Zhang Jiarong)'s testimony in a criminal case.

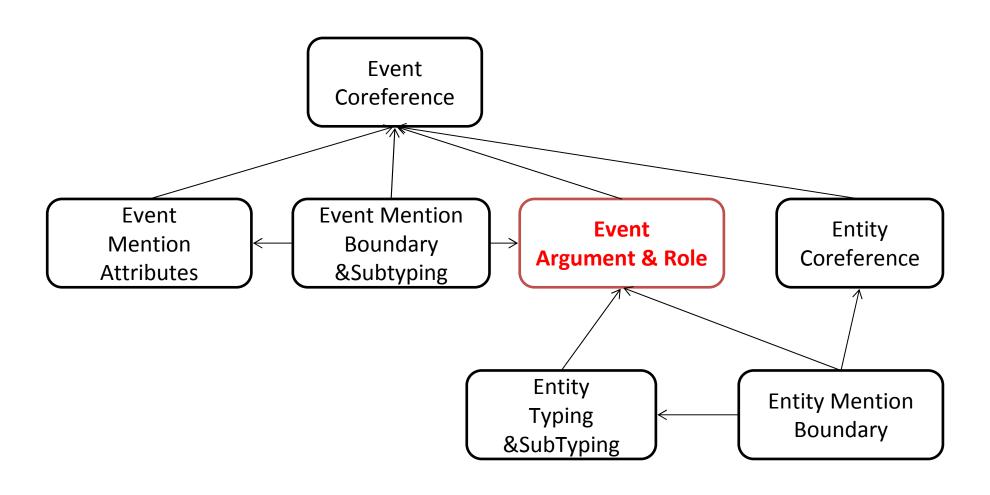
This example contains three event mentions, each of which has a type and subtype and is associated with arguments

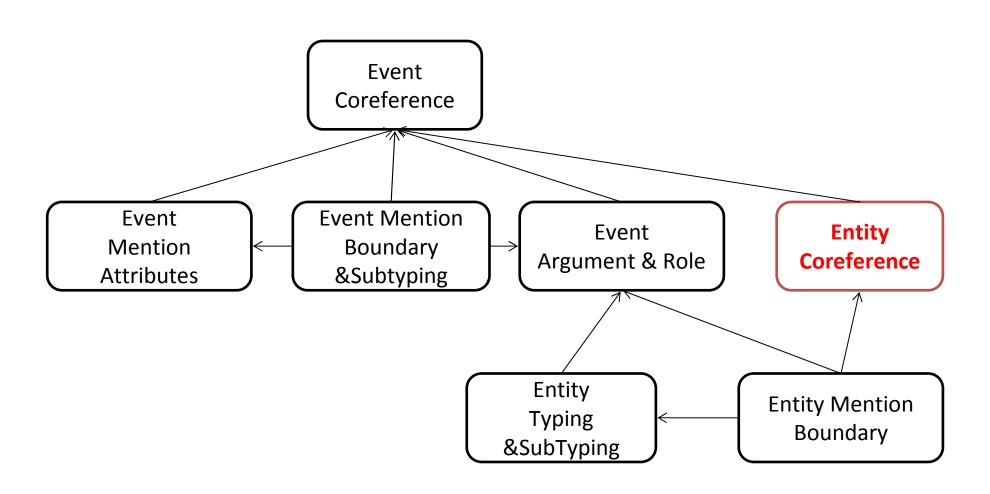
- This example contains three event mentions, each of which has a type and subtype and is associated with arguments
 - [injured]: Type LIFE; SubType INJURE; arguments: (Zhang Jiarong), (the road) and (yesterday evening)

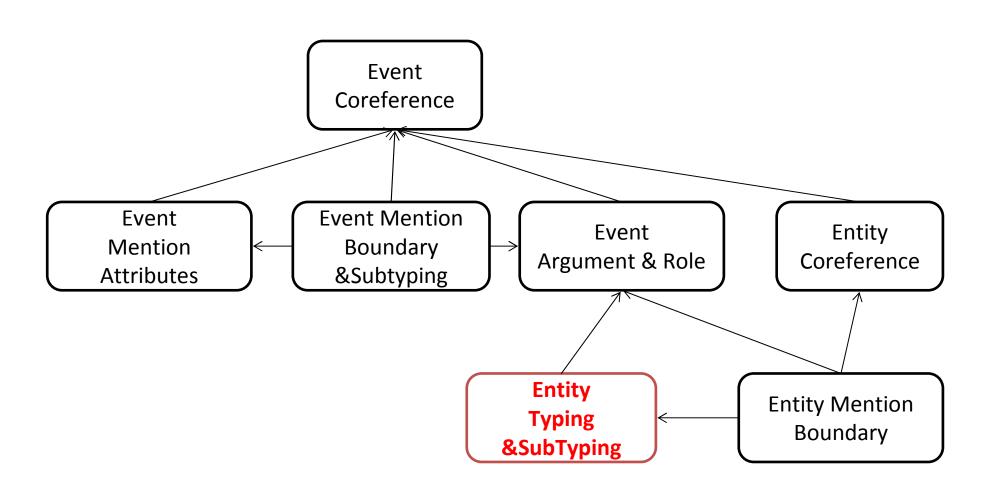

- This example contains three event mentions, each of which has a type and subtype and is associated with arguments
 - [injured]: Type LIFE; SubType INJURE; arguments: (Zhang Jiarong), (the road) and (yesterday evening)
 - [stabbed]: Type CONFLICT; SubType: ATTACK; arguments: (two men), (him) and (a knife)

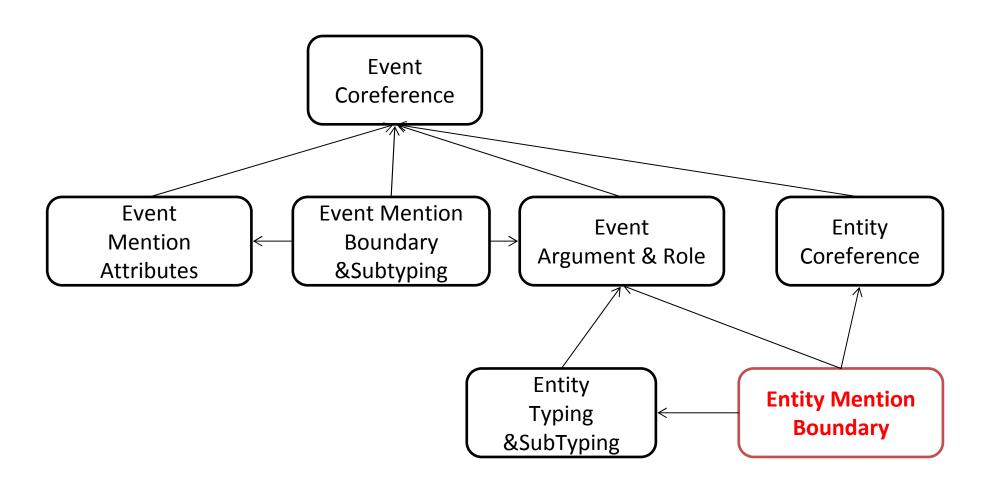

- This example contains three event mentions, each of which has a type and subtype and is associated with arguments
 - [injured]: Type LIFE; SubType INJURE; arguments: (Zhang Jiarong), (the road) and (yesterday evening)
 - [stabbed]: Type CONFLICT; SubType: ATTACK; arguments: (two men), (him) and (a knife)
 - [criminal]: Type CONFLICT; SubType: ATTACK; arguments: (The thugs) and (Zhang Jiarong)

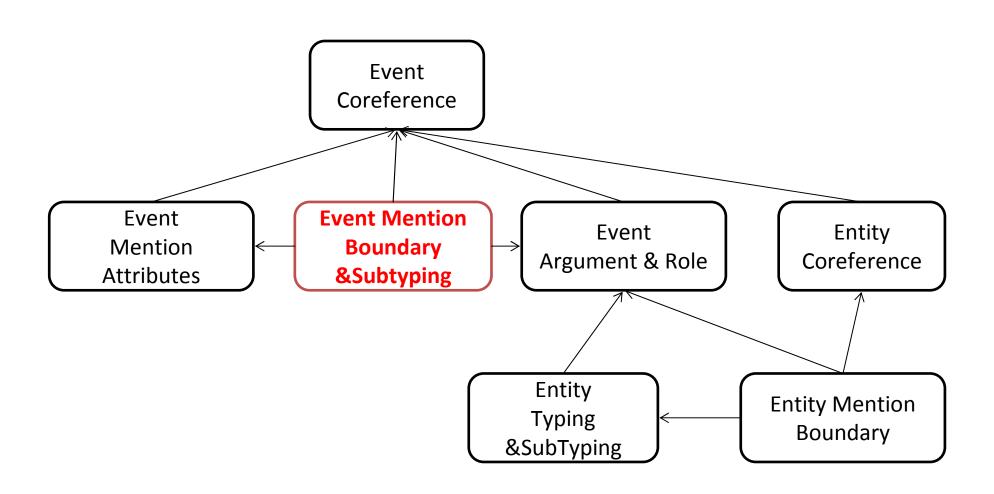

- This example contains three event mentions, each of which has a type and subtype and is associated with arguments
- > [stabbed] and [criminal] are coreferent because they refer to the same real-world event

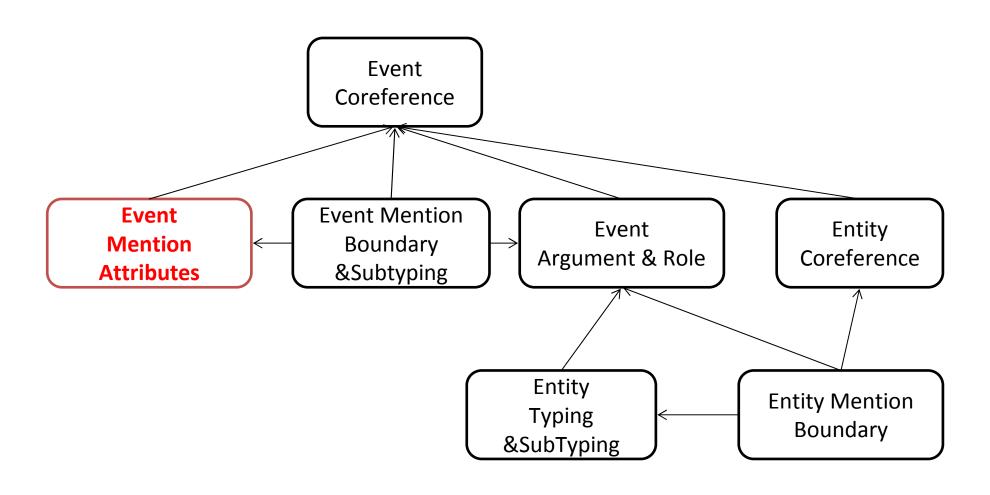

Plan for the Talk


- ACE Event Coreference
- Six Upstream Components in the Pipeline
- Results and Analysis Answer to Question 1
- Conclusion








- Goals
 - Provide the event mentions for event coreference

Goals

- Provide the event mentions for event coreference
- Label each event mention with its event subtype

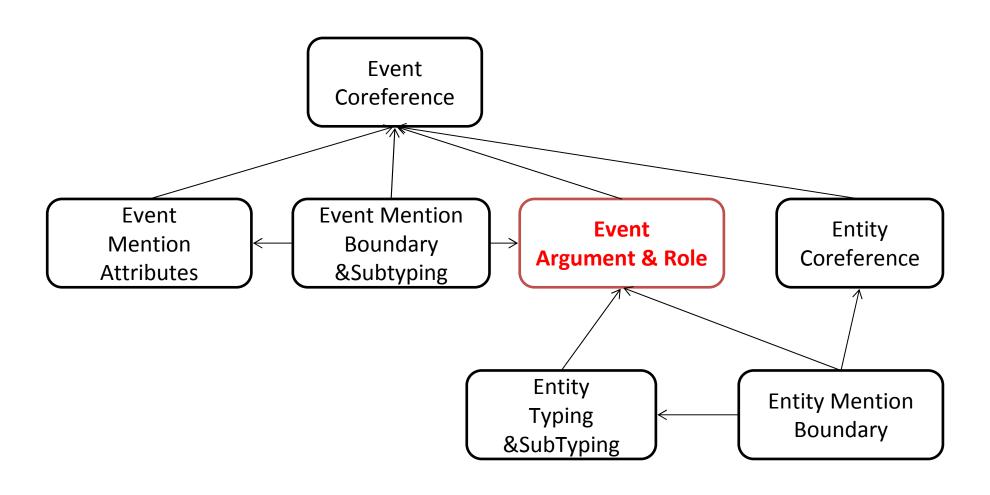
- Goals
 - Provide the event mentions for event coreference
 - Label each event mention with its event subtype,
- Why is this component useful for event coreference?

- Goals
 - Provide the event mentions for event coreference
 - Label each event mention with its event subtype,
- Why is this component useful for event coreference?
 - Two event mentions with different type or subtype cannot be coreferent (useful feature for event coreference)

Event Mention Attribute Value Computation

- Goal
 - Assign each event mention with 4 attributes:
 POLARITY, MODALITY, GENERICITY and TENSE

Event Mention Attribute Value Computation


- Goal
 - Assign each event mention with 4 attributes:
 POLARITY, MODALITY, GENERICITY and TENSE

 Why is this component useful for event coreference?

Event Mention Attribute Value Computation

- Goal
 - Assign each event mention with 4 attributes:
 POLARITY, MODALITY, GENERICITY and TENSE

- Why is this component useful for event coreference?
 - Two events differ in any of four attributes cannot be coreferent (useful feature for event coreference)

Event Argument & Role Classification

Goals

Identify arguments for an event mention (e.g., the participants, time, place)

Event Argument & Role Classification

Goals

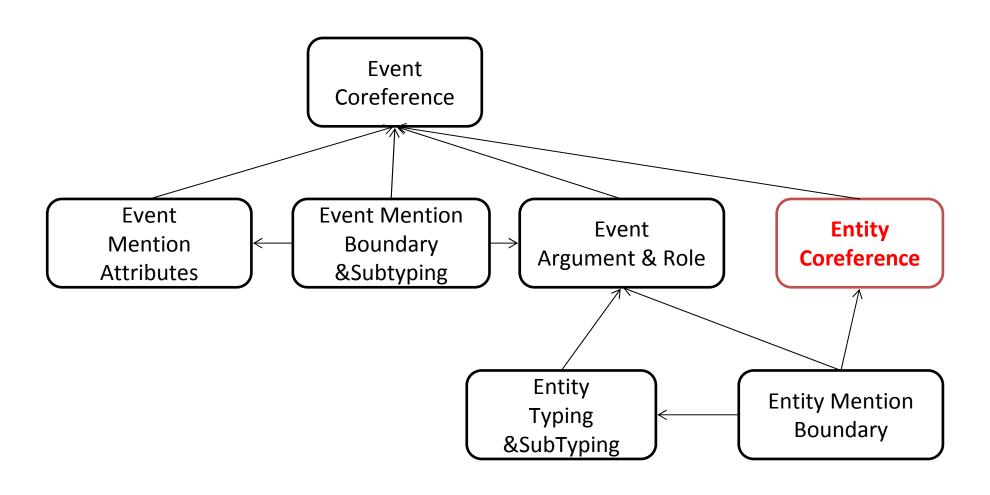
- Identify arguments for an event mention (e.g., the participants, time, place)
- Assign a role (e.g. VICTIM, PLACE, TIME-WITHIN)
 to each argument

Event Argument & Role Classification

Goals

- Identify arguments for an event mention (e.g., the participants, time, place)
- Assign a role (e.g. VICTIM, PLACE, TIME-WITHIN)
 to each argument

 Why is this component useful for event coreference?


Event Argument & Role Classification

Goals

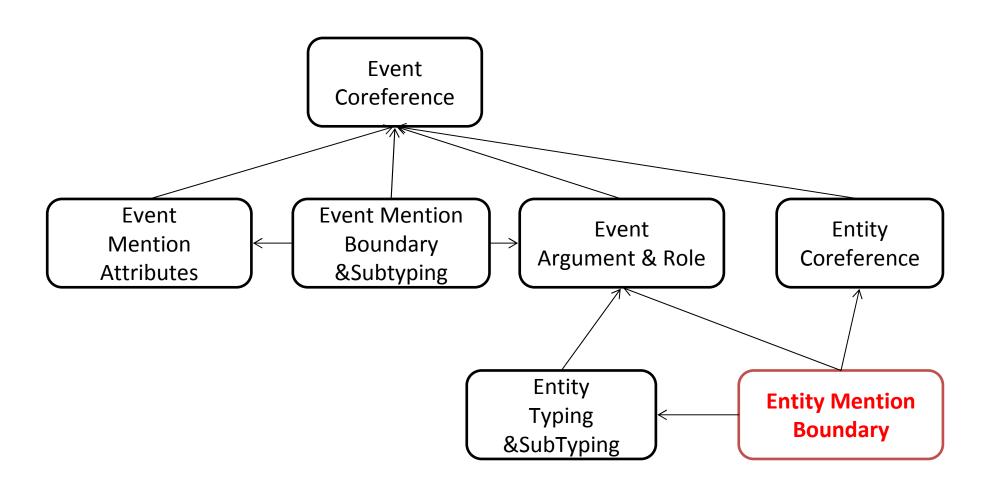
- Identify arguments for an event mention (e.g., the participants, time, place)
- Assign a role (e.g. VICTIM, PLACE, TIME-WITHIN)
 to each argument

- Why is this component useful for event coreference?
 - Useful features for event coreference

Six Upstream Components for Event Coreference Resolution

Entity Coreference Resolution

- Goal
 - Create entity coreference clusters

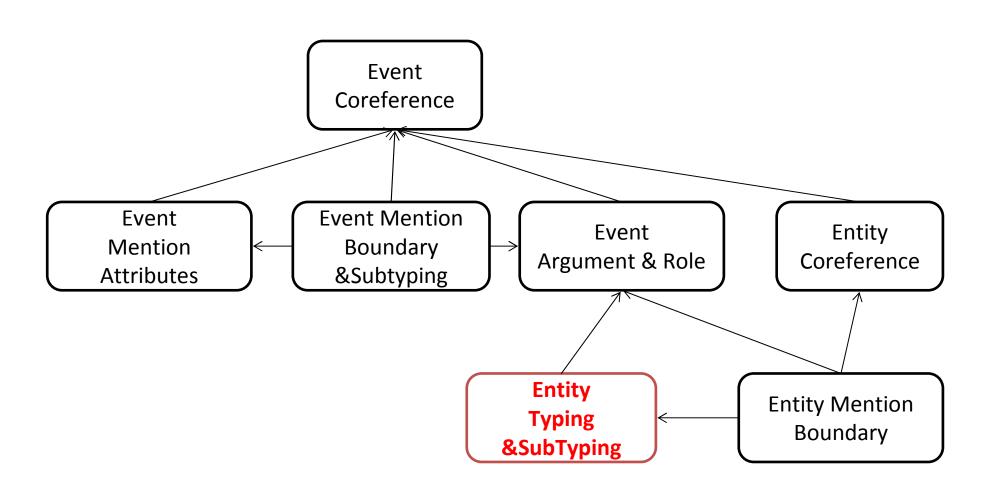

Entity Coreference Resolution

- Goal
 - Create entity coreference clusters
- Why is this component useful for event coreference?

Entity Coreference Resolution

- Goal
 - Create entity coreference clusters
- Why is this component useful for event coreference?
 - Two event mentions having coreferent arguments are likely to be coreferent (useful feature for event coreference)

Six Upstream Components for Event Coreference Resolution


Entity Mention Boundary Identification

- Goal
 - Provide candidate arguments and entity mentions needed by the aforementioned components

Entity Mention Boundary Identification

- Goal
 - Provide candidate arguments and entity mentions needed by the aforementioned components
 - Indirect influence on event coreference

Six Upstream Components for Event Coreference Resolution

- Goal
 - Determine the type and subtype of entity mention

- Goal
 - Determine the type and subtype of entity mention (Indirect influence on event coreference)

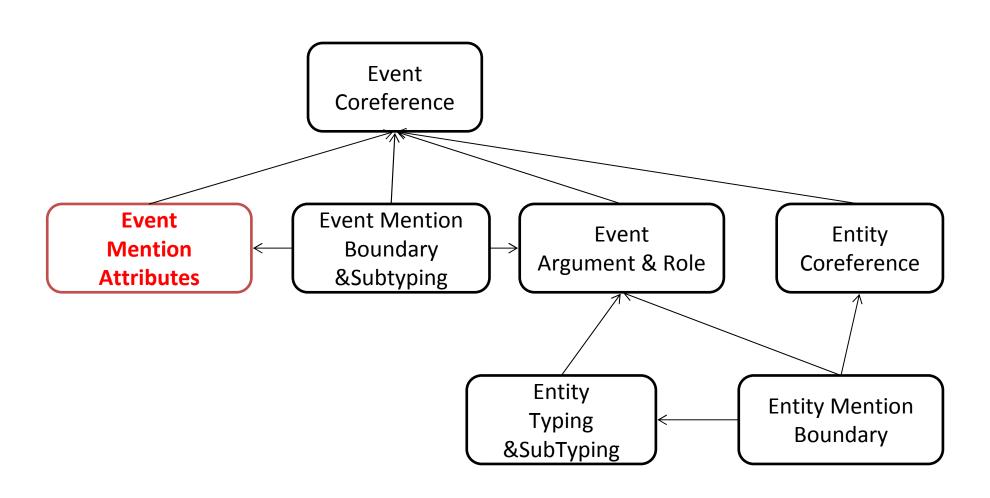
- Goal
 - Determine the type and subtype of entity mention (Indirect influence on event coreference)

 Why is this component useful for event coreference?

- Goal
 - Determine the type and subtype of entity mention (Indirect influence on event coreference)

- Why is this component useful for event coreference?
 - Features for classifying the role of event arguments

Plan for the Talk


- ACE Event Coreference
- Six Upstream Components in the Pipeline
- Results and Analysis Answer to Question 1
- Conclusion

Evaluation Methodology

- Start with an event coreference resolver that assumes all six upstream components are error free
- Replace each oracle component with its system (i.e., automatically computed) counterpart one by one

Replacement 1:

Using System Event Mention Attribute Values for Train & Test

Replacement 1:

Using System Event Mention Attribute Values for Train & Test

- How to implement this component?
 - Following Chen et al.(2009), we train 4 classifiers to compute these attributes, with one classifier per attribute

Replacement 1:

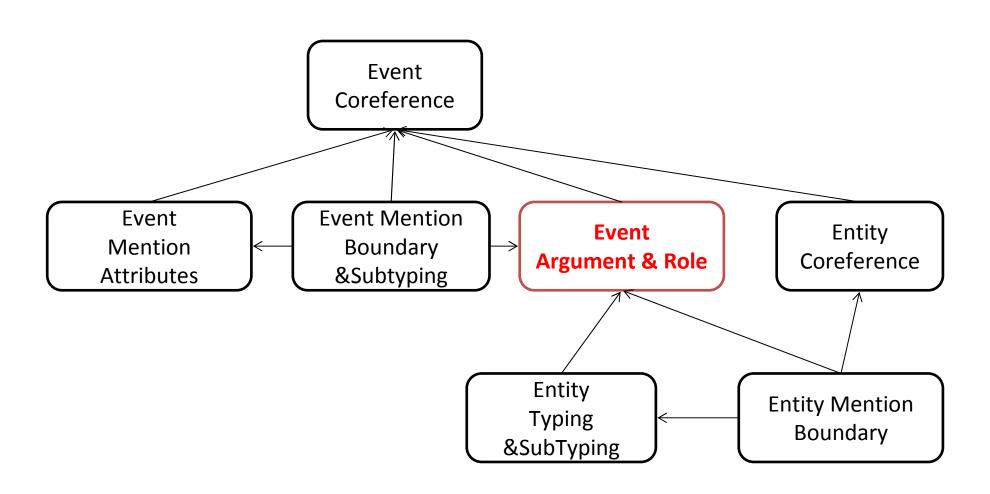
Using System Event Mention Attribute Values for Train & Test

- How to implement this component?
 - Following Chen et al.(2009), we train 4 classifiers to compute these attributes, with one classifier per attribute

 Each of four attribute classifiers is only marginally better than a simple majority baseline

Replacement 1: Using System Event Mention Attribute Values for Train & Test

		MUC			B ³			CEAF _e		AvgF
	R	Р	F	R	Р	F	R	Р	F	F
Before	80.4	70.0	74.8	88.4	79.7	83.8	57.3	66.8	1.7	73.4
After	72.5	64.5	68.3	83.8	77.4	80.5	53.1	59.9	56.3	68.3


• The average F decreases by 5.1%

Replacement 1: Using System Event Mention Attribute Values for Train & Test

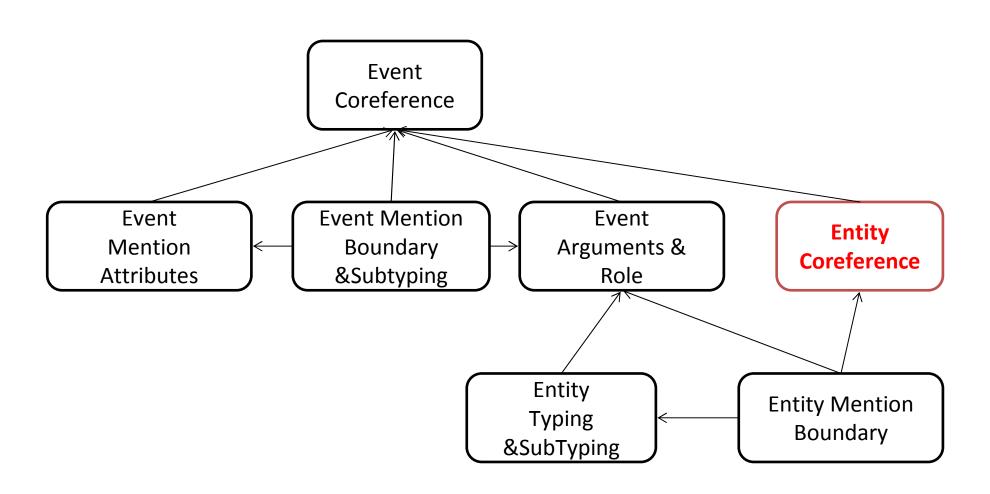
		MUC			B ³			CEAF _e		AvgF
	R	Р	F	R	Р	F	R	Р	F	F
Before	80.4	70.0	74.8	88.4	79.7	83.8	57.3	66.8	1.7	73.4
After	72.5	64.5	68.3	83.8	77.4	80.5	53.1	59.9	56.3	68.3

• Conclusion 1:

 Improving the four event attribute classifiers could significantly improve event coreference

- How to implement this component?
 - Implemented as part of our Chinese event extraction system (Chen and Ng, 2012c)

- How to implement this component?
 - Implemented as part of our Chinese event extraction system (Chen and Ng, 2012c)
- Given gold event mention boundary and subtyping, the F-score of event argument and role classification are 76.9% and 68.2%


		MUC			B ³			CEAF _e		AvgF
	R	Р	F	R	Р	F	R	Р	F	F
Before	72.5	64.5	68.3	83.8	77.4	80.5	53.1	59.9	56.3	68.3
After	71.2	61.2	65.8	83.9	74.9	79.1	49.9	58.0	53.6	66.2

 After replacing gold with system event argument and role, average F-score drops slightly, though significantly, by 2.1%

		MUC			B ³			CEAF _e		AvgF
	R	Р	F	R	Р	F	R	Р	F	F
Before	72.5	64.5	68.3	83.8	77.4	80.5	53.1	59.9	56.3	68.3
After	71.2	61.2	65.8	83.9	74.9	79.1	49.9	58.0	53.6	66.2

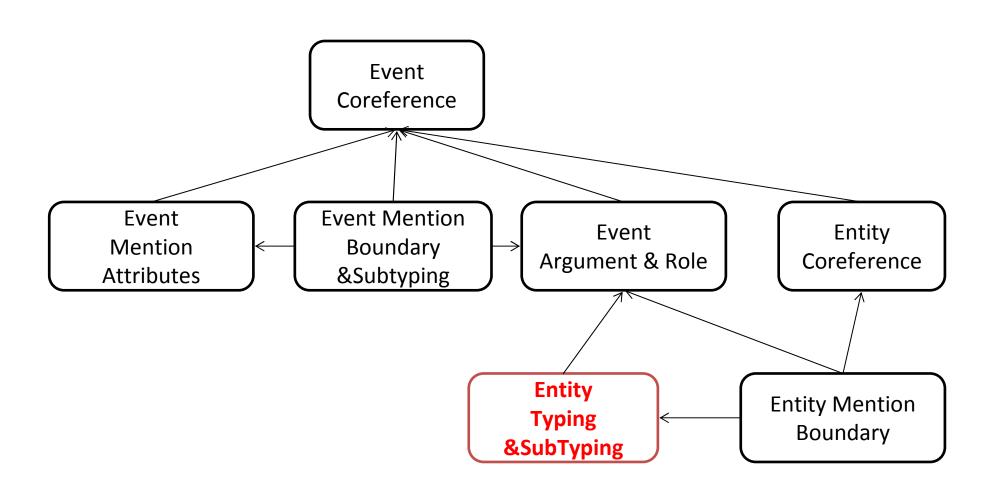
Conclusion 2:

 Event argument and role classification have a small, but significant, impact on event coreference performance

- How to implement this component?
 - Provided by our Chinese entity coreference resolver (Chen and Ng, 2012b)

- How to implement this component?
 - Provided by our Chinese entity coreference resolver (Chen and Ng, 2012b)

 Given gold entity mentions, our system entity coreference resolver achieves a MUC F-score of 78.0%


		MUC			B ³			CEAF _e		AvgF
	R	Р	F	R	Р	F	R	Р	F	F
Before	71.2	61.2	65.8	83.9	74.9	79.1	49.9	58.0	53.6	66.2
After	61.6	58.5	60.0	79.0	75.7	77.3	49.1	51.5	50.3	62.5

 Replacing gold with system entity coreference incurs a 3.7% drop

		MUC			B ³			CEAF _e		AvgF
	R	Р	F	R	Р	F	R	Р	F	F
Before	71.2	61.2	65.8	83.9	74.9	79.1	49.9	58.0	53.6	66.2
After	61.6	58.5	60.0	79.0	75.7	77.3	49.1	51.5	50.3	62.5

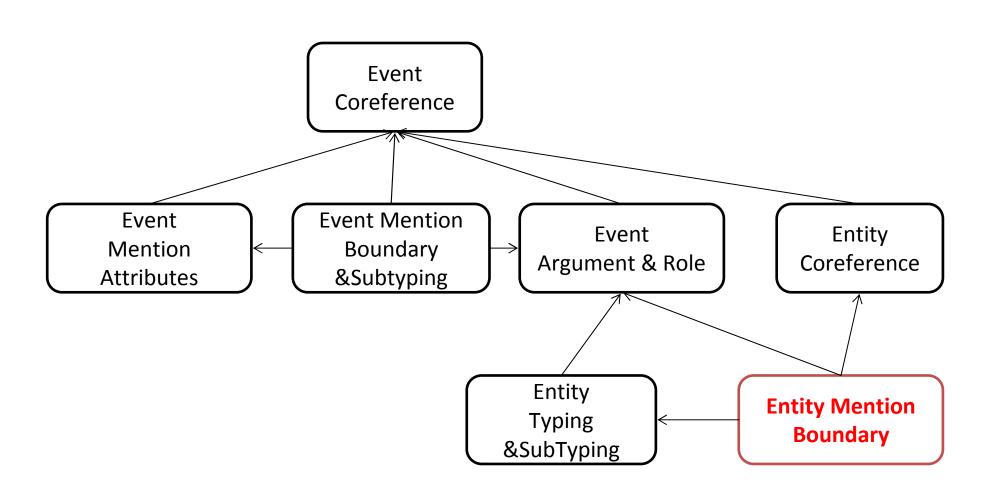
Conclusion 3:

Improve entity coreference could significantly improve event coreference

- How to implement this component?
 - We determine entity types and subtypes by training two SVM classifiers

- How to implement this component?
 - We determine entity types and subtypes by training two SVM classifiers
- Given gold entity mentions, system entity type and subtype classifiers achieve F-scores of 90.1% and 81.6%

		MUC			B ³			CEAF _e		AvgF
	R	Р	F	R	Р	F	R	Р	F	F
Before	61.6	58.5	60.0	79.0	75.7	77.3	49.1	51.5	50.3	62.5
After	62.2	57.9	60.0	79.4	75.2	77.2	49.0	52.3	50.6	62.6


 After replacing gold with system entity types and subtypes, event coreference performance does not drop

		MUC			B ³			CEAF _e		AvgF
	R	Р	F	R	Р	F	R	Р	F	F
Before	61.6	58.5	60.0	79.0	75.7	77.3	49.1	51.5	50.3	62.5
After	62.2	57.9	60.0	79.4	75.2	77.2	49.0	52.3	50.6	62.6

• Conclusion 4:

Improving entity typing & subTyping classification is unlikely to improve event coreference

Replacement 5: Using System Entity Mention Boundary detection

Replacement 5:

Using System Entity Mention Boundary detection

- How to implement this component?
 - We train CRF classifiers to extract entity mentions, time expressions and value expressions

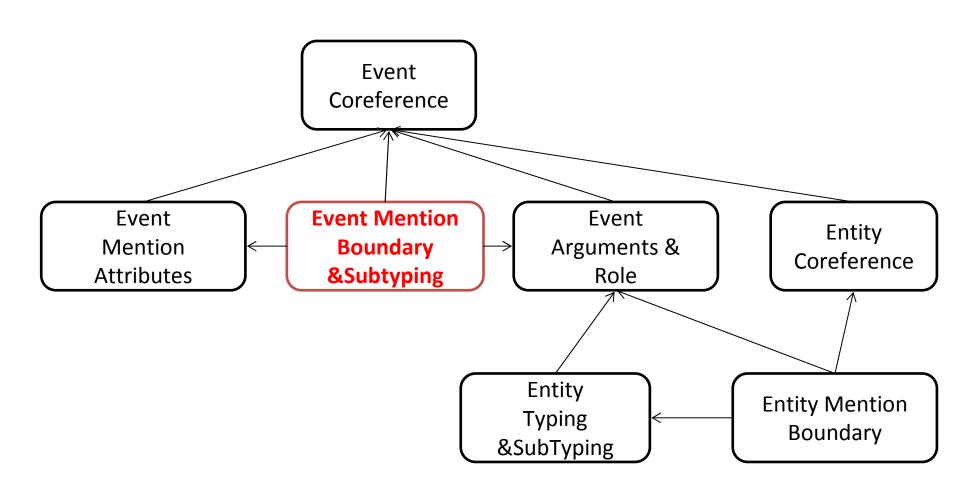
Replacement 5:

Using System Entity Mention Boundary detection

- How to implement this component?
 - We train CRF classifiers to extract entity mentions, time expressions and value expressions
- System entity mention boundary detection component achieves an F-score of 84.7%

Replacement 5: Using System Entity Mention Boundary detection

		MUC			B ³			CEAF _e		AvgF
	R	Р	F	R	Р	F	R	Р	F	F
Before	62.2	57.9	60.0	79.4	75.2	77.2	49.0	52.3	50.6	62.6
After	63.3	57.4	60.2	80.2	74.4	77.2	48.2	52.8	50.4	62.6


 Replacing gold with system entity mention boundary detection does not alter event coreference performance

Replacement 5: Using System Entity Mention Boundary detection

		MUC			B ³			CEAF _e		AvgF
	R	Р	F	R	Р	F	R	Р	F	F
Before	62.2	57.9	60.0	79.4	75.2	77.2	49.0	52.3	50.6	62.6
After	63.3	57.4	60.2	80.2	74.4	77.2	48.2	52.8	50.4	62.6

• Conclusion 5:

 Improving entity mention boundary detection may not improve event coreference

- How to implement this component?
 - Implemented as part of our Chinese event extraction system (Chen and Ng, 2012c)

- How to implement this component?
 - Implemented as part of our Chinese event extraction system (Chen and Ng, 2012c)
- System event mention boundary identifier achieves an F-score of 65.1%
- System event subtype classifier achieves an Fscore of 61.3%

		MUC			B ³			CEAF _e		AvgF
	R	Р	F	R	Р	F	R	Р	F	F
Before	63.3	57.4	60.2	80.2	74.4	77.2	48.2	52.8	50.4	62.6
After	37.4	36.7	37.1	72.8	71.1	71.9	40.6	41.1	40.8	49.9

 Replacing gold with system event mention boundary and subtyping causes average Fscore to drop by 12.7%

		MUC			B ³			CEAF _e		AvgF
	R	Р	F	R	Р	F	R	Р	F	F
Before	63.3	57.4	60.2	80.2	74.4	77.2	48.2	52.8	50.4	62.6
After	37.4	36.7	37.1	72.8	71.1	71.9	40.6	41.1	40.8	49.9

Conclusion 6:

 Event mention boundary identification and subtyping is the upstream component that has the largest impact

Answer to Question 1

- Components whose noise have an impact on event coreference performance (in decreasing order of impact):
 - Event Mention Boundary Identification & SubTyping
 - Event Mention Attribute Value Computation
 - Entity Coreference Resolution
 - Event Argument & Role Classification
- Components whose noise do not have an impact:
 - Entity Mention Boundary Identification
 - Entity Typing & SubTyping

Plan for the Talk

- ACE Event Coreference
- Six Upstream Components
- Results and Analysis Answer to Question 1
- Error Analysis Answer to Question 2
- Conclusion

Precision Errors

- Lack of event timestamping
 - Only events occurring exactly at the same time can be coreferent
 - TENSE is just a very rough approximation

Lack of event timestamping

E1: In last March, Yang Guangnan was [arrested] in Shanghai for the first time.

E2: Yang Guangnan was [arrested] again in Shanghai.

Precision Errors

- Incompatible triggers
 - Two events containing coreferent arguments, but triggers are semantically incompatible

Incompatible triggers

E1: On the 28th, Sam Nujoma arrived in Pyongyang by plane for an official goodwill [visit] to the DPRK.

E2: Namibian President Sam Nujoma [arrived] in Pyongyang by plane on the 28th.

Precision Errors

- Incompatible important arguments
 - Two events containing strong hint to be coreferent, while some of their important arguments are incompatible

Incompatible important arguments

E1: The delegation [visited] Sweden.

E2: During their [visit] in Denmark, the Chinese Christian delegation held a press conference.

Recall Errors

- Coreferent mentions with synonymous triggers
 - Event mentions that have synonymous but lexically different trigger words

Coreferent mentions with synonymous triggers

E1: Jewish [violence] against the Arabs.

E2: Two parties of [conflict].

Recall Errors

- Coreferent mentions with compatible arguments
 - Though two argument are not coreferent, while they are compatible

Coreferent mentions with compatible arguments

E1: Yugoslavia's head of state [visited] Bosnia-Herzegovina for the first time.

E2: Kostunica [visited] Sarajevo, the capital of Bosnia-Herzegovina.

Plan for the Talk

- ACE Event Coreference
- Six Upstream Components in the Pipeline
- Results and Analysis Answer to Question 1
- Conclusion

Conclusion

- We analyzed an ACE-style Chinese event coreference system by investigating:
 - The extent to which its performance is affected by the errors made by its upstream components
 - Types of errors made by the resolution algorithm