Human Language Technology Research Institute

Stance Classification in Ideological Debates: Data, Models, Features, and Constraints

Kazi Saidul Hasan and Vincent Ng Human Language Technology Research Institute University of Texas at Dallas

 Given a debate post written for a two-sided debate topic, determine the author's stance (For or Against)

 Given a debate post written for a two-sided debate topic, determine the author's stance (For or Against)

Should abortion be allowed?

 Given a debate post written for a two-sided debate topic, determine the author's stance (For or Against)

Should abortion be allowed?

Women should have the ability to choose what they do with their bodies.

 Given a debate post written for a two-sided debate topic, determine the author's stance (For or Against)

Should abortion be allowed?

Women should have the ability to choose what they do with their bodies.

For

 Given a debate post written for a two-sided debate topic, determine the author's stance (For or Against)

Should abortion be allowed?

Women should have the ability to choose what they do with their bodies.

Technically abortion is murder. They are killing the baby without a justified motive.

For

 Given a debate post written for a two-sided debate topic, determine the author's stance (For or Against)

Should abortion be allowed?

Women should have the ability to choose what they do with their bodies.

Technically abortion is murder. They are killing the baby without a justified motive.

For

Against

Related Work

- Considered three debate settings
 - US congressional floor debates
 - Thomas et al. (2006), Bansal et al. (2008), Burfoot et al. (2011)...
 - Company-internal debates
 - Murakami and Raymond (2010)
 - Ideological debates
 - Somasundaran and Wiebe (2010), Anand et al. (2011), ...

Related Work

- Considered three debate settings
 - US congressional floor debates
 - Thomas et al. (2006), Bansal et al. (2008), Burfoot et al. (2011)...
 - Company-internal debates
 - Murakami and Raymond (2010)
 - Ideological debates
 - Somasundaran and Wiebe (2010), Anand et al. (2011), ...
 - More challenging than the other settings
 - Use of colorful and emotional languages
 - sarcasm, insults, questioning other people's assumptions, ...

 Gain a better understanding of how to improve learning approaches to stance classification in ideological debate

- Gain a better understanding of how to improve learning approaches to stance classification in ideological debate
 - Examine how the performance of a learning-based stance classification system varies with
 - the complexity of the learning model

- Gain a better understanding of how to improve learning approaches to stance classification in ideological debate
 - Examine how the performance of a learning-based stance classification system varies with
 - the complexity of the learning model
 - the richness of the feature set

- Gain a better understanding of how to improve learning approaches to stance classification in ideological debate
 - Examine how the performance of a learning-based stance classification system varies with
 - the complexity of the learning model
 - the richness of the feature set
 - training data size and quality

- Gain a better understanding of how to improve learning approaches to stance classification in ideological debate
 - Examine how the performance of a learning-based stance classification system varies with
 - the complexity of the learning model
 - the richness of the feature set
 - training data size and quality

amount

Use automatically labeled data as additional training data

- Gain a better understanding of how to improve learning approaches to stance classification in ideological debate
 - Examine how the performance of a learning-based stance classification system varies with
 - the complexity of the learning model
 - the richness of the feature set
 - training data size and quality
 - the application of extra-linguistic constraints

Ensure a stance classifier's outputs are consistent

Plan for the Talk

- Datasets
- Experimental setup for examining how classification performance varies with
 - the complexity of the learning model
 - the richness of the feature set
 - the amount and quality of training data
 - the application of extra-linguistic constraints
- Evaluation

- 4 datasets
 - collected from http://www.createdebate.com
 - contain debate posts collected from four debate topics

Topic	Posts	"for" %	Average Sequence Length
Support Abortion?	1741	54.9	4.1
Support Gay Rights?	1376	63.4	4.0
Support Obama?	985	53.9	2.6
Legalize Marijuana?	626	69.5	2.5

- 4 datasets
 - collected from http://www.createdebate.com
 - contain debate posts collected from four debate topics

Topic	Posts	"for" %	Average Sequence Length
Support Abortion?	1741	54.9	4.1
Support Gay Rights?	1376	63.4	4.0
Support Obama?	985	53.9	2.6
Legalize Marijuana?	626	69.5	2.5

- 4 datasets
 - collected from http://www.createdebate.com
 - contain debate posts collected from four debate topics

Topic	Posts	"for" %	Average Sequence Length
Support Abortion?	1741	54.9	4.1
Support Gay Rights?	1376	63.4	4.0
Support Obama?	985	53.9	2.6
Legalize Marijuana?	626	69.5	2.5

- 4 datasets
 - collected from http://www.createdebate.com
 - contain debate posts collected from four debate topics

Topic	Posts	"for" %	Average Sequence Length
Support Abortion?	1741	54.9	4.1
Support Gay Rights?	1376	63.4	4.0
Support Obama?	985	53.9	2.6
Legalize Marijuana?	626	69.5	2.5

Plan for the Talk

- Datasets
- Experimental setup for examining how classification performance varies with
 - the complexity of the learning model
 - the richness of the feature set
 - the amount and quality of training data
 - the application of extra-linguistic constraints
- Evaluation

Models

- Examine how performance varies with model complexity
 - Examine three types of stance classification models

1st Type: Classification Models

- Binary classifier that assigns a stance label (for/against) to each debate post independently of other posts
 - Each training instance corresponds to a debate post

1st Type: Classification Models

- Binary classifier that assigns a stance label (for/against) to each debate post independently of other posts
 - Each training instance corresponds to a debate post
- To train the binary classifier, we employ
 - a generative model: Naïve Bayes
 - a discriminative model: SVMs
- Can determine which type of models is better for this task

2nd Type: Sequence Models

 Sequence models assume as input a post sequence and output a stance sequence

2nd Type: Sequence Models

 Sequence models assume as input a post sequence and output a stance sequence

Motivation

• Since a post in a post sequence is a reply to its parent post, its label should be determined in dependent relation to its parent's

2nd Type: Sequence Models

 Sequence models assume as input a post sequence and output a stance sequence

Motivation

- Since a post in a post sequence is a reply to its parent post, its label should be determined in dependent relation to its parent's
- To train sequence models, we employ
 - a generative model: HMM
 - a discriminative model: CRF

 Jointly determine the stance label of a debate post and the stance label of each of its sentences

- Jointly determine the stance label of a debate post and the stance label of each of its sentences
- Why fine-grained models?

- Jointly determine the stance label of a debate post and the stance label of each of its sentences
- Why fine-grained models?
 - Modeling sentence stances could improve document stance prediction

- Jointly determine the stance label of a debate post and the stance label of each of its sentences
- Why fine-grained models?
 - Modeling sentence stances could improve document stance prediction
 - Features computed from sentences with a neutral stance should not play any role in determining the document stance

- Jointly determine the stance label of a debate post and the stance label of each of its sentences
- Why fine-grained models?
 - Modeling sentence stances could improve document stance prediction
 - Features computed from sentences with a neutral stance should not play any role in determining the document stance
- Focus on implementing fine-grained generative models based on NB and HMMs

- To generate a debate post
 - generate its document stance c with P(c)
 - for each sentence in the post
 - generate its sentence stance s with P(s|c)
 - generate each feature f representing the sentence with P(f|s,c)

- To generate a debate post
 - generate its document stance c with P(c)
 - for each sentence in the post
 - generate its sentence stance s with P(s|c)
 - generate each feature f representing the sentence with P(f|s,c)

- Document stance can have one of 2 values: for, against
- Sentence stance can have one of 3 values: for, against, neutral

- To generate a debate post
 - generate its document stance c with P(c)
 - for each sentence in the post
 - generate its sentence stance s with P(s|c)
 - generate each feature f representing the sentence with P(f|s,c)

- Fine-grained NB and fine-grained HMM employ this same story
 - Differ in terms of whether doc stance is generated independently (NB) or in dependent relation to that of the preceding post (HMM)

- To generate a debate post
 - generate its document stance c with P(c)
 - for each sentence in the post
 - generate its sentence stance s with P(s|c)
 - generate each feature f representing the sentence with P(f|s,c)
 - Modeling assumption
 - P(f | s=neutral, c=for) = P(f | s=neutral, c=against)

- To generate a debate post
 - generate its document stance c with P(c)
 - for each sentence in the post
 - generate its sentence stance s with P(s|c)
 - generate each feature f representing the sentence with P(f|s,c)

Modeling assumption

- P(f | s=neutral, c=for) = P(f | s=neutral, c=against)
- If a sentence's stance is neutral, the document's stance has no impact on how likely its feature values are generated

- To generate a debate post
 - generate its document stance c with P(c)
 - for each sentence in the post
 - generate its sentence stance s with P(s|c)
 - generate each feature f representing the sentence with P(f|s,c)

Modeling assumption

- P(f | s=neutral, c=for) = P(f | s=neutral, c=against)
- If a sentence's stance is neutral, the document's stance has no impact on how likely its feature values are generated
- Neutral sentences have no impact on determining doc stance

- To generate a debate post
 - generate its document stance c with P(c)
 - for each sentence in the post
 - generate its sentence stance s with P(s|c)
 - generate each feature f representing the sentence with P(f|s,c)

- To generate a debate post
 - generate its document stance c with P(c)
 - for each sentence in the post
 - generate its sentence stance s with P(s|c)
 - generate each feature f representing the sentence with P(f|s,c)

 The training debate posts are labeled with document stances but not sentence stances

- To generate a debate post
 - generate its document stance c with P(c)
 - for each sentence in the post
 - generate its sentence stance s with P(s|c)
 - generate each feature f representing the sentence with P(f|s,c)

 The training debate posts are labeled with document stances but not sentence stances

can be estimated in a supervised manner

- To generate a debate post
 - generate its document stance c with P(c)
 - for each sentence in the post
 - generate its sentence stance s with P(s|c)
 - generate each feature f representing the sentence with P(f|s,c)

cannot be estimated in a supervised manner

 The training debate posts are labeled with document stances but not sentence stances

can be estimated in a supervised manner

- To generate a debate post
 - generate its document stance c with P(c)
 - for each sentence in the post
 - generate its sentence stance s with P(s|c)
 - generate each feature f representing the sentence with P(f|s,c)

Treat s as a hidden variable, estimate with EM

 The training debate posts are labeled with document stances but not sentence stances

can be estimated in a supervised manner

Plan for the Talk

- Datasets
- Experimental setup for examining how classification performance varies with
 - the complexity of the learning model
 - the richness of the feature set
 - the amount and quality of training data
 - the application of extra-linguistic constraints
- Evaluation

Features

Goal

- Examine how performance varies with the richness of the feature set
 - Examine three feature sets

Feature Set 1: N-grams

 Unigrams and bigrams collected from the training posts, encoded as binary features indicating their presence/absence

Feature Set 2: Anand et al.'s (2011) Features

- Anand et al. (2011)'s system
 - state-of-the-art system for stance classification in ideological debate

Feature Set 2: Anand et al.'s (2011) Features

- Anand et al. (2011)'s system
 - state-of-the-art system for stance classification in ideological debate
 - Employs 5 types of features
 - N-grams
 - Unigrams and bigrams
 - First N-grams
 - First unigram, first bigram, first trigram of a debate post
 - Document statistics
 - Post length, #words/sentence, % pronouns, % sentiment words,...
 - Punctuations
 - Repeated punctuation symbols in a post
 - Dependency-based features
 - Argument pairs as features and their generalized form

Feature Set 2: Anand et al.'s (2011) Features

- Anand et al. (2011)'s system
 - state-of-the-art system for stance classification in ideological debate
 - Employs 5 types of features
 - N-grams
 - Unigrams and bigrams

First N-grams

- First unigram, first bigram, first trigram of a debate post
- Document statistics
 - Post length, #words/sentence, % pronouns, % sentiment words,...
- Punctuations
 - Repeated punctuation symbols in a post
- Dependency-based features
 - Argument pairs as features and their generalized form

composed of statistical and syntactic features

 Produce a frame-semantic parse for each sentence in a debate post using SEMAFOR (Das et al., 2010)

- Produce a frame-semantic parse for each sentence in a debate post using SEMAFOR (Das et al., 2010)
 - Each parse consists of a set of frames and their frame elements
 - frame: describes an event mentioned in a sentence
 - frame element: person/object participating in the event

- Produce a frame-semantic parse for each sentence in a debate post using SEMAFOR (Das et al., 2010)
 - Each parse consists of a set of frames and their frame elements
 - frame: describes an event mentioned in a sentence
 - frame element: person/object participating in the event
- Extract 3 types of features from a frame-semantic parse

Frame	Target and frame elements
People	Target: "woman"
	Target: "has"
Possession	Owner: "Every woman"
	Possession: "the right to choose abortion"
Correctness	Target: "right"
Choosing	Target: "choose"
	Chosen: "abortion"

Frame	Target and frame elements
People	Target: "woman"
Possession	Target: "has"
	Owner: "Every woman"
	Possession: "the right to choose abortion"
Correctness	Target: "right"
Choosing	Target: "choose"
	Chosen: "abortion"

Frame	Target and frame elements
People	Target: "woman"
	Target: "has"
Possession	Owner: "Every woman"
	Possession: "the right to choose abortion"
Correctness	Target: "right"
Choosing	Target: "choose"
	Chosen: "abortion"

Frame	Target and frame elements
People	Target: "woman"
	Target: "has"
Possession	Owner: "Every woman"
	Possession: "the right to choose abortion"
Correctness	Target: "right"
Choosing	Target: "choose"
	Chosen: "abortion"

Frame	Target and frame elements
People	Target: "woman"
	Target: "has"
Possession	Owner: "Every woman"
	Possession: "the right to choose abortion"
Correctness	Target: "right"
Choosing	Target: "choose"
	Chosen: "abortion"

Every woman has the right to choose abortion

Frame	Target and frame elements
People	Target: "woman"
	Target: "has"
Possession	Owner: "Every woman"
	Possession: "the right to choose abortion"
Correctness	Target: "right"
Choosing	Target: "choose"
	Chosen: "abortion"

Given a parse, extract 3 types of frame-semantic features

Frame	Target and frame elements
People	Target: "woman"
	Target: "has"
Possession	Owner: "Every woman"
	Possession: "the right to choose abortion"
Correctness	Target: "right"
Choosing	Target: "choose"
	Chosen: "abortion"

Frame	Target and frame elements
People	Target: "woman"
	Target: "has"
Possession	Owner: "Every woman"
	Possession: "the right to choose abortion"
Correctness	Target: "right"
Choosing	Target: "choose"
	Chosen: "abortion"

Frame	Target and frame elements
People	Target: "woman"
	Target: "has"
Possession	Owner: "Every woman"
	Possession: "the right to choose abortion"
Correctness	Target: "right"
Choosing	Target: "choose"
	Chosen: "abortion"

Frame	Target and frame elements
People	Target: "woman"
	Target: "has"
Possession	Owner: "Every woman"
	Possession: "the right to choose abortion"
Correctness	Target: "right"
Choosing	Target: "choose"
	Chosen: "abortion"

Every woman has the right to choose abortion

Frame	Target and frame elements
People	Target: "woman"
	Target: "has"
Possession	Owner: "Every woman"
	Possession: "the right to choose abortion"
Correctness	Target: "right"
Choosing	Target: "choose"
	Chosen: "abortion"

Possession:every:the

Every woman has the right to choose abortion

Frame	Target and frame elements
People	Target: "woman"
	Target: "has"
Possession	Owner: "Every woman"
	Possession: "the right to choose abortion"
Correctness	Target: "right"
Choosing	Target: "choose"
	Chosen: "abortion"

Possession:every:the

Every woman has the right to choose abortion

Frame	Target and frame elements
People	Target: "woman"
	Target: "has"
Possession	Owner: "Every woman"
	Possession: "the right to choose abortion"
Correctness	Target: "right"
Choosing	Target: "choose"
	Chosen: "abortion"

Possession:every:right

Every woman has the right to choose abortion

Frame	Target and frame elements
People	Target: "woman"
	Target: "has"
Possession	Owner: "Every woman"
	Possession: "the right to choose abortion"
Correctness	Target: "right"
Choosing	Target: "choose"
	Chosen: "abortion"

Possession:every:right

Every woman has the right to choose abortion

Frame	Target and frame elements
People	Target: "woman"
	Target: "has"
Possession	Owner: "Every woman"
	Possession: "the right to choose abortion"
Correctness	Target: "right"
Choosing	Target: "choose"
	Chosen: "abortion"

Possession:every:the Possession:every:right Posession:woman:to

Frame	Target and frame elements
People	Target: "woman"
	Target: "has"
Possession	Owner: "Every woman"
	Possession: "the right to choose abortion"
Correctness	Target: "right"
Choosing	Target: "choose"
	Chosen: "abortion"

Frame	Target and frame elements
People	Target: "woman"
	Target: "has"
Possession	Owner: "Every woman"
	Possession: "the right to choose abortion"
Correctness	Target: "right"
Choosing	Target: "choose"
	Chosen: "abortion"

Frame	Target and frame elements
People	Target: "woman"
	Target: "has"
Possession	Owner: "Every woman"
	Possession: "the right to choose abortion"
Correctness	Target: "right"
Choosing	Target: "choose"
	Chosen: "abortion"

Frame	Target and frame elements
People	Target: "woman"
	Target: "has"
Possession	Owner: "Every woman"
	Possession: "the right to choose abortion"
Correctness	Target: "right"
Choosing	Target: "choose"
	Chosen: "abortion"

Frame-Pair Features

Frame	Target and frame elements	
People	Target: "woman"	
Target: "has"		
Possession	Owner: "Every woman"	
	Possession: "the right to choose abortion"	
Correctness	Target: "right"	
Choosing	Target: "choose"	
	Chosen: "abortion"	

Frame-Pair Features

Every woman has the right to choose abortion

Frame	Target and frame elements	
People	Target: "woman"	
	Target: "has"	
Possession	Owner: "Every woman"	
	Possession: "the right to choose abortion"	
Correctness	Target: "right"	
Choosing	Target: "choose"	
	Chosen: "abortion"	

Possession:People

Frame	Target and frame elements	
People	Target: "woman"	
	Target: "has"	
Possession	Owner: "Every woman"	
	Possession: "the right to choose abortion"	
Correctness	Target: "right"	
Choosing	Target: "choose"	
	Chosen: "abortion"	

Frame	Target and frame elements	
People	Target: "woman"	
	Target: "has"	
Possession	Owner: "Every woman"	
	Possession: "the right to choose abortion"	
Correctness	Target: "right"	
Choosing	Target: "choose"	
	Chosen: "abortion"	

Frame	Target and frame elements	
People	Target "woman"	
Target: "has"		
Possession	Owner: "Every woman"	
	Possession: "the right to choose abortion"	
Correctness	Target: "right"	
Choosing	Target: "choose"	
	Chosen: "abortion"	

Every woman has the right to choose abortion

Frame	Target and frame elements	
People	Target "woman"	
	Target: "has"	
Possession	Owner: "Every woman"	
	Possession: "the right to choose abortion"	
Correctness	Target: "right"	
Choosing	Target: "choose"	
	Chosen: "abortion"	

People:has

Frame	Target and frame elements	
People	Target: "woman"	
	Target: "has"	
Possession (Owner: 'Every woman"	
	Possession: "the right to choose abortion"	
Correctness	Target: "right"	
Choosing	Target: "choose"	
	Chosen: "abortion"	

Every woman has the right to choose abortion

Frame	Target and frame elements	
People	Target: "woman"	
	Target: "has"	
Possession (Owner: 'Every woman"	
	Possession: "the right to choose abortion"	
Correctness	Target: "right"	
Choosing	Target: "choose"	
	Chosen: "abortion"	

Owner:has

Frame	Target and frame elements	
People	Target: "woman"	
	Target "has"	
Possession	Owner: "Every woman" Possession: "the right to choose abortion"	
Correctness	Target: "right"	
Choosing	Target: "choose"	
	Chosen: "abortion"	

Every woman has the right to choose abortion

Frame	Target and frame elements	
People	Target: "woman"	
	Target "has"	
Possession	Owner: "Every woman"	
	Possession: "the right to choose abortion"	
Correctness	Target: "right"	
Choosing	Target: "choose"	
	Chosen: "abortion"	

People:Possession

How to use frame-semantic features?

- Train two stance classifiers, C_a and C_fs
 - C_a: trained using only Anand et al.'s features
 - C_fs: trained using only the frame-semantic features

How to use frame-semantic features?

- Train two stance classifiers, C_a and C_fs
 - C_a: trained using only Anand et al.'s features
 - C_fs: trained using only the frame-semantic features
- To classify a test post,
 - Linearly combine the output of C_a and C_fs
 - Combination weight tuned to maximize performance on dev set

Plan for the Talk

- Datasets
- Experimental setup for examining how classification performance varies with
 - the complexity of the learning model
 - the richness of the feature set
 - the amount and quality of training data
 - the application of extra-linguistic constraints
- Evaluation

Goal

 Examine how performance varies with the amount and quality of training data

Goal

Examine how performance varies with the amount and quality of training data

express all the results as learning curves

Goal

 Examine how performance varies with the amount and quality of training data

Use automatically labeled data as **additional** training data

Goal

 Examine how performance varies with the amount and quality of training data

Use automatically labeled data as **additional** training data

Determine whether noisily labeled data be used to improve stance classification performance

Goal

 Examine how performance varies with the amount and quality of training data

Use automatically labeled data as **additional** training data

Why bother?

Goal

 Examine how performance varies with the amount and quality of training data

Use automatically labeled data as **additional** training data

Why bother?

The number of stance-labeled debate posts that can be downloaded from online debate forums is fairly limited

Goal

 Examine how performance varies with the amount and quality of training data

Use automatically labeled data as **additional** training data

Goal:

Identify documents where authors express viewpoints on the debate topics of interest and stance-label them heuristically

Goal

 Examine how performance varies with the amount and quality of training data

Use automatically labeled data as **additional** training data

Not debate posts Can be blog posts, news articles, etc.

Goal:

Identify documents where authors express viewpoints on the debate topics of interest and stance-label them heuristically

Goal

 Examine how performance varies with the amount and quality of training data

Use automatically labeled data as **additional** training data

Not debate posts Can be blog posts, news articles, etc.

Goal:

Identify documents where authors express viewpoints on the debate topics of interest and stance-label them heuristically

How to collect and heuristically stance-label such documents?

How to incorporate such documents into the training process?

- 2 steps
 - 1. Create using commonsense knowledge a list of phrases that are reliable indicators of both stances for each debate topic

2 steps

1. Create using commonsense knowledge a list of phrases that are reliable indicators of both stances for each debate topic

Abortion		
For	Against	
I think abortion should be legal.	I think abortion should not be legal.	
I support abortion.	I do not support abortion.	
I think abortion should be allowed.	I think abortion should not be allowed.	

2 steps

1. Create using commonsense knowledge a list of phrases that are reliable indicators of both stances for each debate topic

Abortion		
For	Against	
I think abortion should be legal.	I think abortion should not be legal.	
I support abortion.	I do not support abortion.	
I think abortion should be allowed.	I think abortion should not be allowed.	

- 2. Use each phrase as an exact search query to retrieve documents from the Web
 - Heuristically label each retrieved document using the stance associated with each phrase

How to incorporate these noisily labeled documents into the training process?

 How to use noisily labeled documents in combination with the (cleanly labeled) debate posts in the training process?

How to incorporate these noisily labeled documents into the training process?

- How to use noisily labeled documents in combination with the (cleanly labeled) debate posts in the training process?
- Train two stance classifiers
 - C_c: trained on only the debate posts
 - C_c+n: trained on debate posts and noisily labeled documents

How to incorporate these noisily labeled documents into the training process?

- How to use noisily labeled documents in combination with the (cleanly labeled) debate posts in the training process?
- Train two stance classifiers
 - C_c: trained on only the debate posts
 - C_c+n: trained on debate posts and noisily labeled documents
- To classify a test post,
 - Linearly combine the output of these two classifiers
 - Combination weight tuned to maximize performance on dev set

Plan for the Talk

- Datasets
- Experimental setup for examining how classification performance varies with
 - the complexity of the learning model
 - the richness of the feature set
 - the amount and quality of training data
 - the application of extra-linguistic constraints
- Evaluation

Constraints

Goal

 Examine how author constraints (ACs) impact stance classification performance

Constraints

Goal

 Examine how author constraints (ACs) impact stance classification performance

ACs are inter-post constraints that specify that two posts written by the same author for the same debate topic should have the same stance

Use ACs to postprocess the output of a stance classifier

Use ACs to postprocess the output of a stance classifier

```
P1: 0.7 (for), 0.3 (against)
P2: 0.2 (for), 0.8 (against)
P3: 0.7 (for), 0.3 (against)
P4: 0.3 (for), 0.3 (against)
P5: 0.2 (for), 0.8 (against)
P6: 0.9 (for), 0.1 (against)
P7: 0.6 (for), 0.4 (against)
P8: 0.1 (for), 0.9 (against)
P9: 0.4 (for), 0.6 (against)
```

Use ACs to postprocess the output of a stance classifier

```
P1: 0.7 (for), 0.3 (against)
P2: 0.2 (for), 0.8 (against)
P3: 0.7 (for), 0.3 (against)
P4: 0.3 (for), 0.3 (against)
P5: 0.2 (for), 0.8 (against)
P6: 0.9 (for), 0.1 (against)
P7: 0.6 (for), 0.4 (against)
P8: 0.1 (for), 0.9 (against)
P9: 0.4 (for), 0.6 (against)
```

Find the posts written by the same author

Use ACs to postprocess the output of a stance classifier

```
P1: 0.7 (for), 0.3 (against)
P2: 0.2 (for), 0.8 (against)
P3: 0.7 (for), 0.3 (against)
P4: 0.3 (for), 0.3 (against)
P5: 0.2 (for), 0.8 (against)
P6: 0.9 (for), 0.1 (against)
P7: 0.6 (for), 0.4 (against)
P8: 0.1 (for), 0.9 (against)
P9: 0.4 (for), 0.6 (against)
```

Find the posts written by the same author

Use ACs to postprocess the output of a stance classifier

```
P1: 0.7 (for), 0.3 (against)
P2: 0.2 (for), 0.8 (against)
P3: 0.7 (for), 0.3 (against)
P4: 0.3 (for), 0.3 (against)
P5: 0.2 (for), 0.8 (against)
P6: 0.9 (for), 0.1 (against)
P7: 0.6 (for), 0.4 (against)
P8: 0.1 (for), 0.9 (against)
P9: 0.4 (for), 0.6 (against)
```

Sum up the probabilistic votes cast by these posts

Use ACs to postprocess the output of a stance classifier

```
P1: 0.7 (for), 0.3 (against)
P2: 0.2 (for), 0.8 (against)
P3: 0.7 (for), 0.3 (against)
P4: 0.3 (for), 0.3 (against)
P5: 0.2 (for), 0.8 (against)
P6: 0.9 (for), 0.1 (against)
P7: 0.6 (for), 0.4 (against)
P8: 0.1 (for), 0.9 (against)
P9: 0.4 (for), 0.6 (against)
```

Sum up the probabilistic votes cast by these posts

1.4 (for), 2.6 (against)

Use ACs to postprocess the output of a stance classifier

```
P1: 0.7 (for), 0.3 (against)
P2: 0.2 (for), 0.8 (against)
P3: 0.7 (for), 0.3 (against)
P4: 0.3 (for), 0.3 (against)
P5: 0.2 (for), 0.8 (against)
P6: 0.9 (for), 0.1 (against)
P7: 0.6 (for), 0.4 (against)
P8: 0.1 (for), 0.9 (against)
P9: 0.4 (for), 0.6 (against)
```

Assign to each of them the stance that receives more votes

1.4 (for), 2.6 (against)

Use ACs to postprocess the output of a stance classifier

```
P1: 0.7 (for), 0.3 (against)
P2: 0.2 (for), 0.8 (against)
P3: 0.7 (for), 0.3 (against)
P4: 0.3 (for), 0.3 (against)
P5: 0.2 (for), 0.8 (against)
P6: 0.9 (for), 0.1 (against)
P7: 0.6 (for), 0.4 (against)
P8: 0.1 (for), 0.9 (against)
P9: 0.4 (for), 0.6 (against)
```

Assign to each of them the stance that receives more votes

P3: against P5: against P8: against P9: against

Use ACs to postprocess the output of a stance classifier

```
P1: 0.7 (for), 0.3 (against)
P2: 0.2 (for), 0.8 (against)
P3: 0.7 (for), 0.3 (against)
P4: 0.3 (for), 0.3 (against)
P5: 0.2 (for), 0.8 (against)
P6: 0.9 (for), 0.1 (against)
P7: 0.6 (for), 0.4 (against)
P8: 0.1 (for), 0.9 (against)
P9: 0.4 (for), 0.6 (against)
```

Assign to each of them the stance that receives more votes

P3: against P5: against P8: against P9: against

Goal: examine how ACs impact stance classification

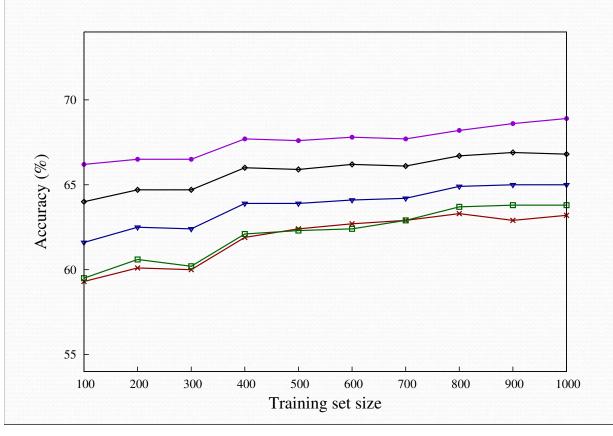
Plan for the Talk

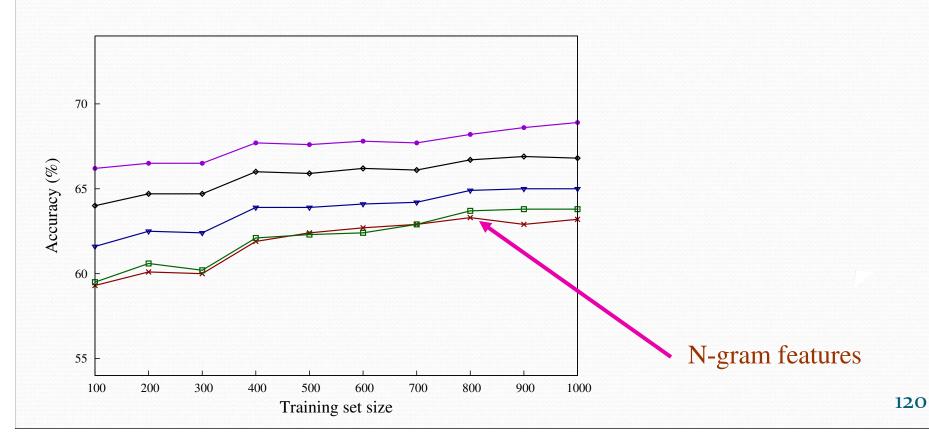
- Datasets
- Experimental setup for examining how classification performance varies with
 - the complexity of the learning model
 - the richness of the feature set
 - the amount and quality of training data
 - the application of extra-linguistic constraints
- Evaluation

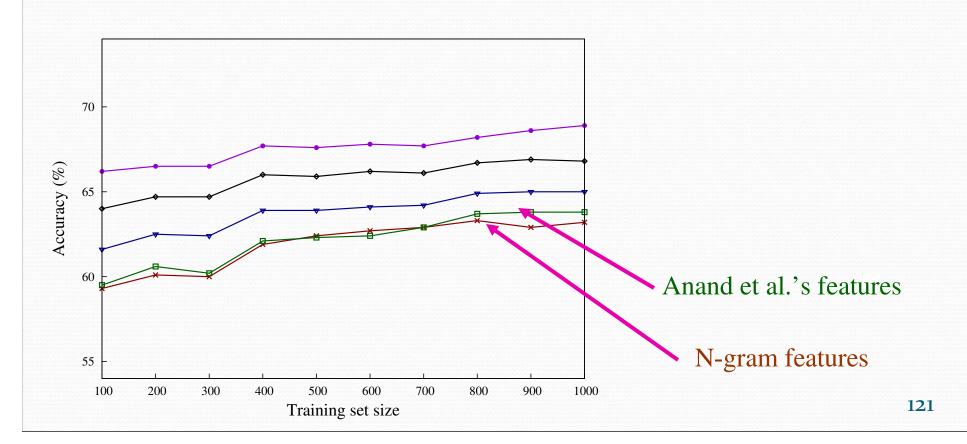
Evaluation: Goal

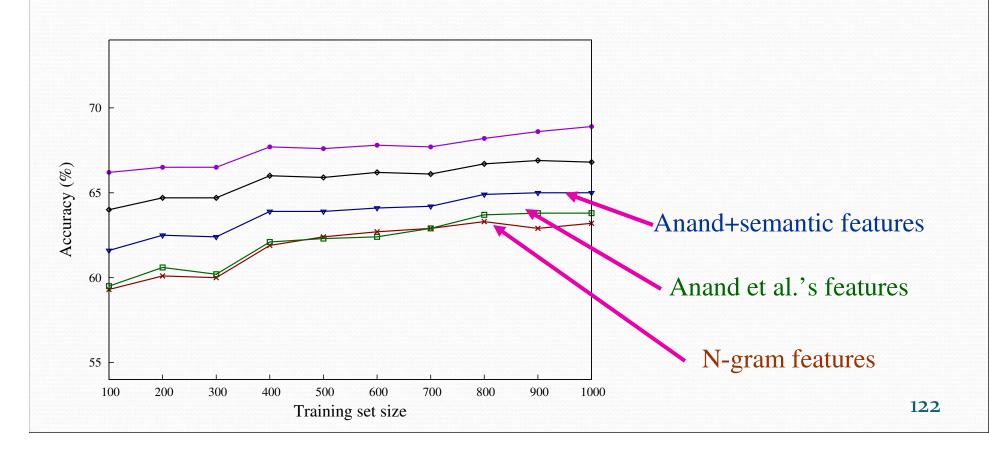
 Examine how stance classification performance varies with the four factors concerning data, features, models and constraints

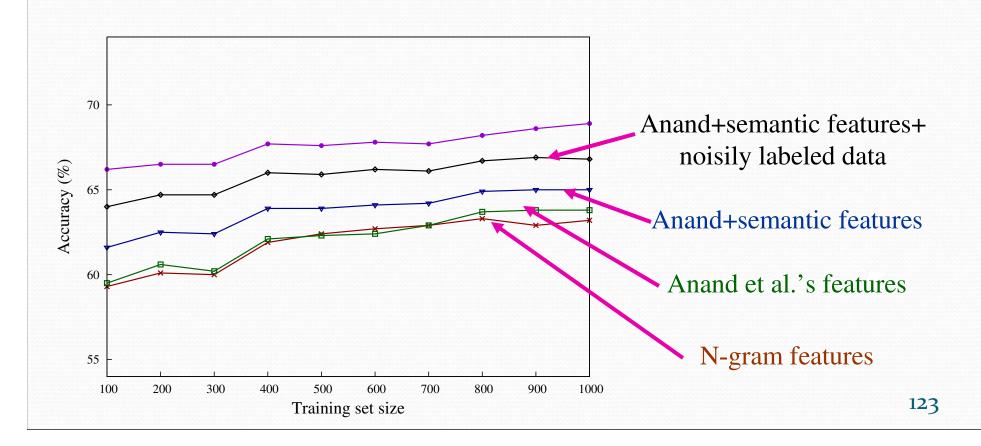
Evaluation: Setup

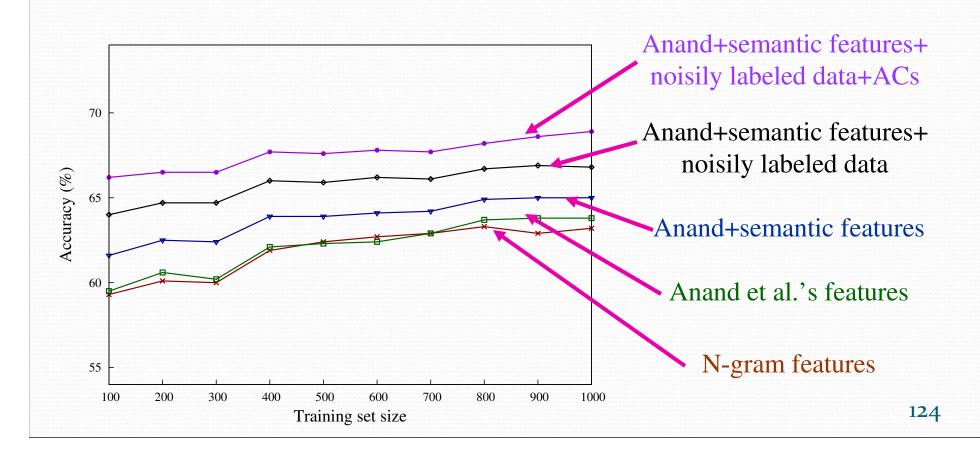

- 5-fold cross validation
- Evaluation metric: accuracy


Recap


- We have 4 evaluation datasets
 - Abortion, Gay Rights, Obama, Marijuana
- We have 6 learning models
 - Naïve Bayes (NB), SVM, HMM, CRF, NB-f, HMM-f


Recap


- We have 4 evaluation datasets
 - Abortion, Gay Rights, Obama, Marijuana
- We have 6 learning models
 - Naïve Bayes (NB), SVM, HMM, CRF, NB-f, HMM-f
- There are 4x6=24 model-dataset combinations
- For each combination, we plot a graph
- Each graph has 5 learning curves



Goal

 Given the 24 graphs corresponding to the 24 model-dataset combinations, we analyze stance classification performance

• Is Anand's feature set stronger than the N-gram feature set?

- Is Anand's feature set stronger than the N-gram feature set?
- Not always.
 - In some cases Anand's feature set yields better performance
 - In other cases it's the other way round

Are frame-semantic features useful?

- Are frame-semantic features useful?
- Yes. Apart from a few cases in Abortion, adding semantic features to Anand's feature set yields significant improvements

Amount of Training Data

 Can we improve performance simply by training on a larger amount of (cleanly labeled) debate posts?

Amount of Training Data

- Can we improve performance simply by training on a larger amount of (cleanly labeled) debate posts?
- Yes. As the number of training posts increases, we see significant improvements on all debate topics
 - 1.5 (Abortion); 2.4 (Gay Rights), 2.0 (Obama), 3.1 (Marijuana)

Quality of Training Data

 Does using noisily labeled documents help improve performance?

Quality of Training Data

 Does using noisily labeled documents help improve performance?

 Yes. Adding noisily labeled documents improves performance significantly regardless of the learning model.

Usefulness of Author Constraints

• Are ACs useful?

Usefulness of Author Constraints

- Are ACs useful?
- Yes. Adding ACs consistently yields significant improvements on all debate topics
 - 7% (Abortion); 3% (Gay Rights); 4% (Obama); 1% (Marijuana)

Models

Which model is better, NB or SVM?

Models

Which model is better, NB or SVM?

- No clear winner
 - SVM beats NB in 17% of the cases
 - NB beats SVM in 27% of the cases
 - they are statistically indistinguishable in the remaining cases
 - Neither generative nor discriminative models seems better

Model Complexity

 Are the sequence models better than their non-sequence counterparts?