Human Language Technology Research Institute

Markov Logic Networks for Text Mining: A Qualitative and Empirical Comparison with Integer Linear Programming

Luis Gerardo Mojica and Vincent Ng
Human Language Technology Research Institute
University of Texas at Dallas

Motivation

- Many NLP systems adopt a pipeline architecture
 - A given task is broken into a sequence of sub-tasks, where the output of one sub-task is the input of the next one
- Strengths
 - Modularity, modeling convenience, manageable computational complexity, ...
- Weakness
 - Error propagation

Joint Inference Frameworks

- Integer Linear Programming (ILP)
- Markov Logic Networks (MLNs)
- Enable manual specification of output constraints
 - Allow incorporation of background knowledge
 - Address error propagation by allowing downstream components to influence upstream components

Joint Inference Frameworks (Cont')

ILP is used a lot more than MLNs in NLP

- Is ILP better than MLNs?
- Should we care about MLNs at all?

•

Plan for the Talk

- Preliminaries
 - ILP
 - MLN
 - Task: fine-grained opinion extraction
- ILP and MLN formulations of the task
- Qualitative and empirical comparison
 - Strengths and weaknesses of MLNs
 - Evaluation

Plan for the Talk

- Preliminaries
 - ILP
 - MLN
 - Task: fine-grained opinion extraction
- ILP and MLN formulation of the task
- Qualitative and empirical comparison
 - Strengths and weaknesses of MLNs
 - Evaluation

ILP

- A constrained optimization framework
 - Goal: optimize an objective function subject to a set of linear (equality and inequality) constraints

```
Maximize: f(x_1, x_2, ..., x_n)
```

Subject to:
$$g_j(x_1, x_2, ..., x_n) \ge b_j$$
 $(j = 1, 2, ..., m)$

- A variety of methods can be used to solve ILP problems
- Software for solving ILP problems available

MLNs

- A statistical relational learning approach
- Combines graphical models with first-order logic
- A MLN is a set of weighted first-order logic formulas (fi, wi), where wi is the weight associated with formula fi
 - $-0.8 \forall x \text{ Smoke}(x) \rightarrow \text{Cancer}(x)$

MLNs

- A statistical relational learning approach
- Combines graphical models with first-order logic
- A MLN is a set of weighted first-order logic formulas (fi, wi), where wi is the weight associated with formula fi
 - 0.8 \forall x Smoke(x) \rightarrow Cancer(x)
- Given a set of constants that model objects in the domain of interest, a MLN defines a Markov network
 - One node per grounded predicate
 - Cancer(John), Cancer(Mary), Cancer(Ed),...
 - Smoke(John), Smoke(Mary), Smoke(Ed),...
 - One feature per each grounding of each first-order formula
 - Smoke(John) → Cancer(John), Smoke(Ed) → Cancer(Ed),...
 - Feature weight is the weight of the first-order formula

MLN: Key Learning Task

- Weight learning: learn the weights of the soft formulas so that the conditional likelihood of the training data is optimized
 - In ILP, there is no learning
 - In ILP, the function to be optimized is user-defined

MLN: Key Inference Task

- MAP inference: Finding the most probable world
 - A world: assignment of values to the grounded predicates
 - Probability of a world ω is given by

$$\Pr(\omega) = \frac{1}{Z} \exp\left(\sum_{i} w_{i} N(f_{i}, \omega)\right)$$

N(fi, ω) is the number of groundings of fi that evaluate to True in ω

Z is the normalization constant

- Software for MAP inference available
 - can be reduced to propositional MAP inference and the MAP can be found using an ILP solver

Plan for the Talk

- Preliminaries
 - ILP
 - MLN
 - Task: fine-grained opinion extraction
- ILP and MLN formulation of the task
- Qualitative and empirical comparison
 - Strengths and weaknesses of MLNs
 - Evaluation

- involves two subtasks
 - Entity extraction
 - Relation extraction

- Subtask 1: Entity extraction
 - Extracts three types of entities
 - opinions
 - their sources (who expressed the opinions?)
 - their targets (what the opinions are about)

- Subtask 1: Entity extraction
 - Extracts three types of entities
 - opinions
 - their sources (who expressed the opinions?)
 - their targets (what the opinions are about)

The agency considered that the trade was favorable,

- Subtask 1: Entity extraction
 - Extracts three types of entities
 - opinions
 - their sources (who expressed the opinions?)
 - their targets (what the opinions are about)

The agency considered that the trade was favorable,

- Subtask 1: Entity extraction
 - Extracts three types of entities
 - opinions
 - their sources (who expressed the opinions?)
 - their targets (what the opinions are about)

The agency considered that the trade was favorable,

- Subtask 1: Entity extraction
 - Extracts three types of entities
 - opinions
 - their sources (who expressed the opinions?)
 - their targets (what the opinions are about)

The agency considered that the trade was favorable,

- Subtask 1: Entity extraction
 - Extracts three types of entities
 - opinions
 - their sources (who expressed the opinions?)
 - their targets (what the opinions are about)
 - Some opinions don't have a source and/or target
 - Source-implicit opinions
 - Target-implicit opinions

- Subtask 2: Relation extraction
 - Extracts two types of relations
 - is_from (between an opinion and its source)
 - is_about (between an opinion and its target)

The agency considered that the trade was favorable,

- Subtask 2: Relation extraction
 - Extracts two types of relations
 - is_from (between an opinion and its source)
 - is_about (between an opinion and its target)is_from

The agency considered that the trade was favorable,

- Subtask 2: Relation extraction
 - Extracts two types of relations
 - is_from (between an opinion and its source)
 - is_about (between an opinion and its target)

The agency considered that the trade was favorable,

- Subtask 2: Relation extraction
 - Extracts two types of relations
 - is_from (between an opinion and its source)
 - is_about (between an opinion and its target)

is_about

The agency considered that the trade was favorable,

- Subtask 2: Relation extraction
 - Extracts two types of relations
 - is_from (between an opinion and its source)
 - is_about (between an opinion and its target)

The agency considered that the trade was favorable,

but their partners are still not satisfied.

is_about

Why Joint Inference for Fine-Grained Opinion Extraction?

• Errors propagate in a pipeline architecture

Why Joint Inference for Fine-Grained Opinion Extraction?

Errors propagate in a pipeline architecture

Train a CRF to extract the 3 types of entities

Train two SVMs to determine if an opinion is source-implicit or target-implicit (or both)

Why Joint Inference for Fine-Grained Opinion Extraction?

Errors propagate in a pipeline architecture

Train a CRF to extract the 3 types of entities

Train two SVMs to determine if an opinion is source-implicit or target-implicit (or both)

For each pair of entities extracted, train an SVM to determine what type of relation exists between them, if any

Plan for the Talk

- Preliminaries
 - ILP
 - MLN
 - Task: fine-grained opinion extraction
- ILP and MLN formulations of the task
- Qualitative and empirical comparison
 - Strengths and weaknesses of MLNs
 - Evaluation

Key Issue

Encode output constraints

Constraint 1 (Consistency on entity extraction)

Every text span has exactly one label (S, T, O, N)

∃c Span(i,c!)

Constraint 1 (Consistency on entity extraction)

Every text span has exactly one label (S, T, O, N)

∃c Span(i,c!)

Constraint 2 (Consistency on entity extraction)

Entities cannot overlap

Overlap(i,j) -> Span(i,N) V Span(j,N)

Constraint 3 (Consistency on Entity & Rel. Extraction)

- An opinion is source-implicit if and only if it doesn't have a source
- An opinion is target-implicit if and only if it doesn't have a target

```
Implicit_src(i) \leftarrow \rightarrow !Is_from(i,j)
Implicit_trg(i) \leftarrow \rightarrow !Is_about(i,j)
```

Constraint 4 (Consistency on Entity & Rel. Extraction)

- If the entity extractor predicts a span to be a source or target, it must also be predicted by the relation extractor as being linked to an opinion
- Span(j,S) $\rightarrow \exists$ i Is_from(i,j)
- Is_from(i,j) → Span(i,O)
- Span(j,T) → ∃ i Is_about(i,j)
- Is_about(i,j) → Span(i,O)

Constraint 4 (Consistency on Entity & Rel. Extraction)

 If the entity extractor predicts a span to be a source or target, it must also be predicted by the relation extractor as being linked to an opinion

- Span(j,S) $\rightarrow \exists$ i Is_from(i,j)
- Is_from(i,j) → Span(i,O)
- Span(j,T) → ∃ i Is_about(i,j)
- Is_about(i,j) → Span(i,O)

Prior Knowledge as Soft Evidence

- When doing joint inference over the test instances, we can't just have constraints
 - We need knowledge
- The probabilistic classifications made by the 3 independently-trained models (entity extractor, relation classifier, implicit classifier) can be exploited as prior knowledge when encoded as soft evidences

- Every text span has exactly one label (S, T, O, N)
 - $-x_{iz}$: binary variable whose value is 1 if span i is assigned entity label z

$$\sum_{z} x_{iz} = 1$$

- Entities cannot overlap
 - x: binary variable
 - i, j: span
 - z: entity label

$$\sum_{z \neq N} x_{iz} + \sum_{z \neq N} x_{jz} \le 1$$

- An opinion is source-implicit if and only if it doesn't have a source
- An opinion is target-implicit if and only if it doesn't have a target
- u_{ii}: 1 iff opinion i is related to j in relation type k
- v_{ik} : 1 iff opinion i is implicit w.r.t. relation type k

$$\sum_{j \in A_k} u_{ij} = 1 - v_{ik} + a_{ik} + b_{ik}$$
$$a_{ik} \le 1 - v_{ik}; \ b_{ik} \le 1 - v_{ik}$$

- If the entity extractor predicts a span to be a source or target, it must also be predicted by the relation extractor as being linked to an opinion
- xjz: 1 iff span j is predicted to have entity label z
- uij: 1 iff opinion i is related to span j

$$\sum_{i \in O} u_{ij} = x_{jz} + c_{jk} + d_{jk}$$
$$c_{jk} \le x_{jz}; \ d_{jk} \le x_{jz}$$

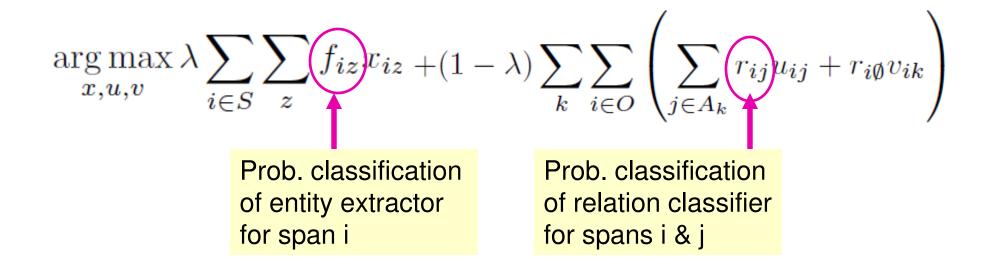
 Weighted combination of the prior knowledge provided by the 3 models

$$\underset{x,u,v}{\operatorname{arg\,max}} \lambda \sum_{i \in S} \sum_{z} f_{iz} x_{iz} + (1 - \lambda) \sum_{k} \sum_{i \in O} \left(\sum_{j \in A_k} r_{ij} u_{ij} + r_{i\emptyset} v_{ik} \right)$$

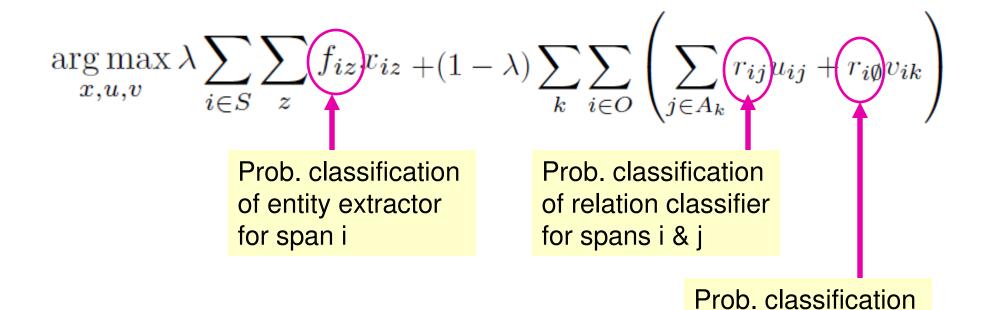
 Weighted combination of the prior knowledge provided by the 3 models

$$\operatorname*{arg\,max}_{x,u,v} \lambda \sum_{i \in S} \sum_{z} \underbrace{f_{iz}}_{tiz} v_{iz} + (1-\lambda) \sum_{k} \sum_{i \in O} \left(\sum_{j \in A_k} r_{ij} u_{ij} + r_{i\emptyset} v_{ik} \right)$$
 Prob. classification of entity extractor for span i

 Weighted combination of the prior knowledge provided by the 3 models



Weighted combination of the prior knowledge provided by the 3 models



of implicit classifier

for span i

Weighted combination of the prior knowledge provided by the 3 models

$$\operatorname*{arg\,max}_{x,u,v} \lambda \sum_{i \in S} \sum_{z} f_{iz} v_{iz} + (1-\lambda) \sum_{k} \sum_{i \in O} \left(\sum_{j \in A_k} r_{ij} u_{ij} + r_{i\emptyset} v_{ik} \right)$$
 Prob. classification of entity extractor for span i Prob. classifier for spans i & j

ILP incorporates prior knowledge into the objective function, whereas MLN encodes it as soft evidences

Prob. classification of implicit classifier for span i

Plan for the Talk

- Preliminaries
 - ILP
 - MLN
 - Task: fine-grained opinion extraction
- ILP and MLN formulation of the task
- Qualitative and empirical comparison
 - Strengths and weaknesses of MLNs
 - Evaluation

MLNs: Strengths

 The ability to employ soft constraints and learn weights for them

What if we want to exploit semantic role labels?

- A span i with verb sense s is likely to have entity type c
 Sense (i, s+) ⇒ Span (i, c+)
- A span i with semantic role r is likely to have entity type c Role $(i, r+) \Rightarrow Span(i, c+)$

Soft formulas: manually or automatically attach weights to them

MLNs: Strengths

 The ability to employ soft constraints and learn weights for them

Compact representation

Ease of specification

MLNs: Strengths

 The ability to employ soft constraints and learn weights for them

- Compact representation
- Ease of specification

Especially important when we have tasks with a large domain and with complex output constraints

MLNs: Weaknesses

- Exponential time and space complexity
 - Need to ground an MLN
 - But... lifted inference algorithms have been developed
- Failure to exploit prior knowledge (i.e., the soft evidences) in weight learning
 - Can only be applied during test time
 - ILP doesn't have to deal with this issue: no learning
- No support for functions
 - To express i != j, need to define predicate Neq(i,j)
 - Could incur preprocessing overhead
 - ILP natively supports functions

Plan for the Talk

- Preliminaries
 - ILP
 - MLN
 - Task: fine-grained opinion extraction
- ILP and MLN formulation of the task
- Qualitative and empirical comparison
 - Strengths and weaknesses of MLNs
 - Evaluation

Experimental Setup

- Corpus
 - 433 documents in the MPQA 2.0 corpus after discarding those that are ill-formed
- Software packages
 - Gurobi: ILP joint inference
 - Tuffy: MLN joint inference
- Evaluation metrics: R/P/F, inference time

Entity Extraction F-Scores

	Opinion	Target	Source
ILP	59.4	40.1	48.1
MLN	56.8	42.6	60.4

 MLN underperforms ILP on Opinion extraction but outperforms it on Source and Target extraction

Relation Extraction F-Scores

	Is from	Is about
ILP	19.8	22.7
MLN	21.0	28.5

 MLN outperforms ILP on both relation types due to better Source and Target extraction

Inference Time

• ILP: 550 seconds

• MLN: 7,200 seconds

Summary

- Empirical results are too preliminary
 - Corpus is too small and constraints are too simple to reveal the frameworks' relative strengths and weaknesses
 - E.g., No soft constraints
 - Can't draw any conclusions from the empirical results
- Qualitative comparisons are more important
 - MLN strengths: Compact representation, ease of specification, ability to encode soft constraints
 - MLN weakness: inability to scale large problems
- Ongoing work: fast and scalable inference for MLNs so that they can be applied to complex NLP tasks