
1

High-Performance, Language-Independent

Morphological Segmentation

Sajib Dasgupta and Vincent Ng

Human Language Technology Research Institute

University of Texas at Dallas

2

Morphology

� Segmentation of words into prefixes, suffixes and
roots.

� Example

unfriendliness

= un + friend + ly + ness

3

Goal: Unsupervised Morphology

� Input: Unannotated text
corpus

� Output: Word segmentation

157

6

3

77

2781

4696

1082

378

23

117

.......

aback

abacus

abacuses

abalone

abandon

abandoned

abandoning

abandonment

abandonments

abandons
…....

FrequencyWord

aback

abacus

abacus+es

abalone

abandon

abandon+ed

abandon+ing

abandon+ment

abandon+ment
+s

abandon+s

…....

aback

abacus

abacuses

abalone

abandon

abandoned

abandoning

abandonment

abandonments

abandons

…....

SegmentationWord

4

Why Unsupervised Morphology?

� Advantages

� No linguistic knowledge input

� Language Independent

� Resource Scarce Languages

� Only thing we need is a text corpus!!!

� We tested on 4 different languages

� English, Finnish, Turkish, Bengali

5

Plan for the Talk

� Basic system

� Motivated by Keshava and Pitler, the best-
performing algorithm in PASCAL-MorphoChallenge,
2005

� Extensions

� Address two problems with the basic system

6

Problem 1: Over-segmentation

� validate = valid + ate

� candidate = candid + ate

� devalue = de + value

� decrease = de + crease

� Biggest source of errors

� Tough to solve!!

7

Problem 2: Orthographic Change

� Consider

� denial = deny (deni) + al

� stability = stable (stabil) + ity

� How to handle spelling changes?

8

Basic System

1. Induce prefixes, suffixes and roots

2. Segment the words using the induced prefixes,
suffixes and roots

9

Inducing Prefixes and Suffixes

� Assumptions (Keshava and Pitler, 2006)

� xy and x in vocabulary ⇒⇒⇒⇒ y is a suffix

� xy and y in vocabulary ⇒⇒⇒⇒ x is a prefix

� Too simplistic!

� <diverge, diver> ⇒ “ge” is a suffix (Wrong!)

� Solution:

� Score the affixes and remove low-scoring affixes.

10

Scoring the Affixes
� Scoring metric

� score (x) = frequency (x) * length (x)

� Retain only affixes whose score > k, where k is the
threshold.

of different words x attaches to # of characters in x

11

Setting the threshold k
� k is dependent on vocabulary size

� In a larger vocabulary, same affix attaches to larger
number of words.

� So, we need to set larger k for larger vocabulary
system

� For example,

� English: 50

� Finnish: 300

(Finnish vocabulary is almost 6 times larger than that of
English)

12

Basic System

� Induce prefixes, suffixes and roots

� Segment the words using the induced
morphemes

13

Inducing Roots

� For each word w in the vocabulary, we consider w as a
root if it is not divisible i.e.

� w cannot be segmented as p+r or r+x,

where p is a prefix, x is a suffix and r is a word in the
vocabulary

14

Plan for the Talk

� Basic system

� Segmentation using automatically induced morphemes

� Two extensions to the basic system

� Handling over-segmentation (addresses Problem 1)

� Handling orthographic changes (addresses Problem 2)

15

Over-Segmentation

� “affectionate” = “affection” + “ate”? Correct
attachment

� “candidate” = “candid” + “ate”? Incorrect
attachment

� We propose 2 methods:

� Relative Word-Root Frequency

� Suffix Level Similarity

16

Relative Frequency
Our hypothesis:

� If a word w can be segmented as r+a or a+r, where r is a
root and a is an affix, then

correct-attachment (w, r, a) óóóó freq (w) < freq (r)

� Inflectional or derivational form of a root word occurs
less frequently than the root itself

� Examples

� freq (reopen) < freq (open) => reopen = re+open

� freq (candidate) > freq (candid) =>
candidate≠≠≠≠candid+ate

6380 119

17

How correct is this hypothesis?

� In other words, does all the inflectional or derivational
forms of the root words occur less frequently than the
root?

� We randomly chose 387 English words which can be
segmented into Prefix+Root or Root+Suffix

� For each word we check Word-Root Frequency Ratio
(WRFR)

37834344#of words

71.7%88.2%70.1%WRFR<1

OverallPrefix+Roo
t

Root+Suffi
x

18

Relaxing the Hypothesis

� To increase the accuracy of the hypothesis we relax it
as follows:

Original Hypothesis:

correct-attachment (w, r, a) óóóó WRFR (w, r) <
1

Relaxed Hypothesis:

correct-attachment (w, r, a) óóóó WRFR (w, r) <
t

� We set the threshold t to 10 for suffixes and 2 for
prefixes

19

Over Segmentation

� We propose 2 methods:

� Relative Word-Root Frequency

� Suffix Level Similarity

20

Suffix Level Similarity

Our hypothesis:

� If w attaches to a suffix x, then w should attach to
suffixes similar to x. i.e.

w + x ⇒⇒⇒⇒ w + Similar (x)

� “candid” + “ate” = “candidate” ?

21

Suffix Level Similarity

Our hypothesis:

� If w attaches to a suffix x, then w should attach to
suffixes similar to x. i.e.

w + x ⇒⇒⇒⇒ w + Similar (x)

� “candid” + “ate” = “candidate” ?

22

� How to give more weight to “ated” than “s”?

� Similarity Metric:

where n1 is the number of words that combine with x

n2 is the number of words that combine with y

n is the number of words that combine with both x and y

Computing similarity between two

suffixes

,*)|(*)|(),(
21 n

n

n

n
yxPxyPyxSim ==

s

ate

23

Suffix Level Similarity

� How to use suffix level similarity to check whether r +
x is correct?
� We get 10 most similar suffixes of x according to Sim.

� We scale each suffix’s Sim value linearly between 1-10.

� Given 10 similar suffixes x1, x2, … , x10 we check

where fi is 1 if xi attaches to r.

wi is the scaled similarity between suffix x and xi.

t is a predefined threshold (t > 0)

,
10

1

twf ii >∑

24

Suffix Level Similarity

� It’s too strict for words that do not attach to many
suffixes.

� We decided to combine WRFR and suffix level
similarity to detect incorrect attachments:

-WRFR + β * (suffix level similarity) < 0,

where β is set to be 0.15 for all 4 languages we
considered

25

Plan for the Talk

� Basic system

� Segmentation using automatically induced morphemes

� Two extensions to the basic system

� Handling over-segmentation (addresses Problem 1)

� Handling orthographic changes (addresses
Problem 2)

26

Handling Orthographic Changes

� Goal: Segment words like “denial” into “deny”+“al”

� Challenge:

� System does not have any knowledge of language-specific
orthographic rules like

y:i / _ + al

27

Handling Orthographic Changes

� Can we generate the orthographic change rules

automatically?

28

Handling Orthographic Changes

� Can we generate the orthographic change rules
automatically? Yes, but ….

� Considering the complexity of the task, we will focus
on

� Change at the morpheme boundary only

� Change of edit distance 1 (i.e. 1 character insertion or
deletion or replacement)

� Our orthographic induction algorithm consists of 3
steps

29

Step1: Inducing Candidate

Allomorphs
� If

� αAβ is a word in the vocabulary (e.g. “denial”),

� β is an induced suffix (e.g. “al”),

� αB is an induced root (e.g. “deny”),

� The attachment of β to αB is correct according to
relative frequency,

then αA (e.g. “deni”) is an allomorph of αB (e.g.
“deny”)

� The allomorphs generated from at least 2 different
suffixes are called candidate allomorphs

� Now we have a list of <candidate allomorph, root,
suffix> tuples (e.g. <deni, deny, al>)

30

Step 2: Inducing Orthographic Rules

� Each <candidate allomorph, root, suffix> tuple is
associated with an orthographic rule:

� From <denial, deny, al> we learn y:i / _ + al

� From <social, sock, al> we learn k:i / _ + al wrong!

� So, “social” = “sock” + “al” ?

� We have to filter out erroneous rules

31

Step 3: Filtering the Rules

� Goal: For each suffix x, remove the low-frequency
rules

� Frequency of a rule r,

of different <allomorph, root, x> generate the rule r

� Remove r if it is generated by less than 15% of the
tuples.

32

Step 3: Filtering the Rules

� Goal: Filter “morphologically undesirable” rules

� If there are two rules like A:B / _ + x and A:C / _ +
x, then the rules are morphologically undesirable,
because A changes to B and C under the same
environment x.

� To filter morphologically undesirable rules,
1. We define the strength of a rule as follows:

2. We then keep only those rules r whose

frequency (r) * strength (r) > t

∑
=

@

@):(

):(
):(

Afrequency

BAfrequency
BAstrength

33

Setting the threshold t

� t is dependent on vocabulary size

� For example,

� English: 4

� Finnish: 25
(Finnish vocabulary is almost 6 times larger than that of English)

34

Evaluation

� Results for English and Bengali

� PASCAL Morpho-Challenge results

� English, Finnish, Turkish

35

Experimental Setup: Corpora

� English:

� WSJ and BLLIP

� Bengali:

� 5 years of news articles from Prothom Alo

36

Experimental Setup: Test Set Creation

� English:

� 5000 words from our corpus

� Correct segmentation given by CELEX

� Bengali:

� 4191 words from our corpus

� Correct segmentation provided by two linguists

37

Experimental Setup: Evaluation

Metrics

� Exact accuracy

� F-score

38

Results
 English

Bengali

 Acc P R F Acc P R F
Linguistica 68.9

84.8 75.7 80.0 36.3 58.2 63.3 60.6

Morphessor 64.9

69.6 85.3 76.6 56.5 89.7 67.4 76.9

Basic sys-
tem

68.1 79.4 82.8 81.1 57.7 79.6 81.2 80.4

Relative
frequency

74.0 86.4 82.5 84.4 63.2 85.6 79.9 82.7

Suffix level
similarity

74.9 88.6 82.3 85.3 66.1 89.7 78.8 83.9

Allomorph
detection

78.3 88.3 86.4 87.4 68.3 89.3 81.3 85.1

39

Results
 English

Bengali

 Acc P R F Acc P R F
Linguistica 68.9

84.8 75.7 80.0 36.3 58.2 63.3 60.6

Morphessor 64.9

69.6 85.3 76.6 56.5 89.7 67.4 76.9

Basic sys-
tem

68.1 79.4 82.8 81.1 57.7 79.6 81.2 80.4

Relative
frequency

74.0 86.4 82.5 84.4 63.2 85.6 79.9 82.7

Suffix level
similarity

74.9 88.6 82.3 85.3 66.1 89.7 78.8 83.9

Allomorph
detection

78.3 88.3 86.4 87.4 68.3 89.3 81.3 85.1

40

Results
 English

Bengali

 Acc P R F Acc P R F
Linguistica 68.9

84.8 75.7 80.0 36.3 58.2 63.3 60.6

Morphessor 64.9

69.6 85.3 76.6 56.5 89.7 67.4 76.9

Basic sys-
tem

68.1 79.4 82.8 81.1 57.7 79.6 81.2 80.4

Relative
frequency

74.0 86.4 82.5 84.4 63.2 85.6 79.9 82.7

Suffix level
similarity

74.9 88.6 82.3 85.3 66.1 89.7 78.8 83.9

Allomorph
detection

78.3 88.3 86.4 87.4 68.3 89.3 81.3 85.1

41

Results
 English

Bengali

 Acc P R F Acc P R F
Linguistica 68.9

84.8 75.7 80.0 36.3 58.2 63.3 60.6

Morphessor 64.9

69.6 85.3 76.6 56.5 89.7 67.4 76.9

Basic sys-
tem

68.1 79.4 82.8 81.1 57.7 79.6 81.2 80.4

Relative
frequency

74.0 86.4 82.5 84.4 63.2 85.6 79.9 82.7

Suffix level
similarity

74.9 88.6 82.3 85.3 66.1 89.7 78.8 83.9

Allomorph
detection

78.3 88.3 86.4 87.4 68.3 89.3 81.3 85.1

42

Results
 English

Bengali

 Acc P R F Acc P R F
Linguistica 68.9

84.8 75.7 80.0 36.3 58.2 63.3 60.6

Morphessor 64.9

69.6 85.3 76.6 56.5 89.7 67.4 76.9

Basic sys-
tem

68.1 79.4 82.8 81.1 57.7 79.6 81.2 80.4

Relative
frequency

74.0 86.4 82.5 84.4 63.2 85.6 79.9 82.7

Suffix level
similarity

74.9 88.6 82.3 85.3 66.1 89.7 78.8 83.9

Allomorph
detection

78.3 88.3 86.4 87.4 68.3 89.3 81.3 85.1

43

Results
 English

Bengali

 Acc P R F Acc P R F
Linguistica 68.9

84.8 75.7 80.0 36.3 58.2 63.3 60.6

Morphessor 64.9

69.6 85.3 76.6 56.5 89.7 67.4 76.9

Basic sys-
tem

68.1 79.4 82.8 81.1 57.7 79.6 81.2 80.4

Relative
frequency

74.0 86.4 82.5 84.4 63.2 85.6 79.9 82.7

Suffix level
similarity

74.9 88.6 82.3 85.3 66.1 89.7 78.8 83.9

Allomorph
detection

78.3 88.3 86.4 87.4 68.3 89.3 81.3 85.1

44

Results
 English

Bengali

 Acc P R F Acc P R F
Linguistica 68.9

84.8 75.7 80.0 36.3 58.2 63.3 60.6

Morphessor 64.9

69.6 85.3 76.6 56.5 89.7 67.4 76.9

Basic sys-
tem

68.1 79.4 82.8 81.1 57.7 79.6 81.2 80.4

Relative
frequency

74.0 86.4 82.5 84.4 63.2 85.6 79.9 82.7

Suffix level
similarity

74.9 88.6 82.3 85.3 66.1 89.7 78.8 83.9

Allomorph
detection

78.3 88.3 86.4 87.4 68.3 89.3 81.3 85.1

45

PASCAL Morpho-Challenge Results

� Three languages

� English

� Finnish

� Turkish

46

Results (F-scores)

70.166.466.2Morphessor

66.265.279.4Our System

65.364.776.8Winner

TurkishFinnishEnglish

Winner for English: Keshava and Pitler’s (2006) algorithm

Winner for Finnish and Turkish: Bernhard’s (2006) algorithm

Creutz’s remark on the PASCAL Challenge:

None of the participants performs well on all 3 languages

47

Results (F-scores)

70.166.466.2Morphessor

66.265.279.4Our System

65.364.776.8Winner

TurkishFinnishEnglish

Our system outperforms the winners!

• Robustness across different languages

48

Results (F-scores)

70.166.466.2Morphessor

66.265.279.4Our System

65.364.776.8Winner

TurkishFinnishEnglish

Morphessor slightly outperforms our system for Finnish
and Turkish, but what about English?

49

Results (F-scores)

70.166.466.2Morphessor

66.265.279.4Our System

65.364.776.8Winner

TurkishFinnishEnglish

Morphessor performs poorly for English

50

Conclusion

� Our system shows robust performance across
different languages

� Outperforms Linguistica and Morphessor for English
and Bengali

� Compares favorably to the winners of the PASCAL
datasets

51

Thank you!

