High-Performance, Language-Independent Morphological Segmentation

Sajib Dasgupta and Vincent Ng Human Language Technology Research Institute University of Texas at Dallas

Morphology

 Segmentation of words into prefixes, suffixes and roots.

```
Exampleunfriendliness= un + friend + ly + ness
```

Goal: Unsupervised Morphology

• **Input:** Unannotated text

Wollding	Frequency	
aback	157	
abacus	6	
abacuses	3	
abalone	77	
abandon	2781	
abandoned	4696	
abandoning	1082	
abandonment	378	
abandonments	23	
abandons	117	
•••••	•••••	

• Output: Word segmentation

Word	Segmentation	
aback	aback	
abacus	abacus	
abacuses	abacus+es	
abalone	abalone	
abandon	abandon	
abandoned	abandon+ed	
abandoning	abandon+ing	
abandonment	abandon+ment	
abandonments	abandon+ment	
abandons	+S	
•••••	abandon+s	

.....

Why Unsupervised Morphology?

- Advantages
 - No linguistic knowledge input
 - Language Independent
 - Resource Scarce Languages
 - Only thing we need is a text corpus!!!
- We tested on 4 different languages
 - English, Finnish, Turkish, Bengali

Plan for the Talk

Basic system

 Motivated by Keshava and Pitler, the bestperforming algorithm in PASCAL-MorphoChallenge, 2005

Extensions

Address two problems with the basic system

Problem 1: Over-segmentation

- validate = valid + ate
- candidate = candid + ate X
- devalue = de + value
- decrease = de + crease ×
- Biggest source of errors
- Tough to solve!!

Problem 2: Orthographic Change

- Consider
 - denial = deny (deni) + al
 - stability = stable (stabil) + ity
- How to handle spelling changes?

Basic System

- 1. Induce prefixes, suffixes and roots
- Segment the words using the induced prefixes, suffixes and roots

Inducing Prefixes and Suffixes

- Assumptions (Keshava and Pitler, 2006)
 - xy and x in vocabulary $\Rightarrow y$ is a suffix
 - xy and y in vocabulary \Rightarrow x is a prefix
- Too simplistic!
 - <diverge, diver> \Rightarrow "ge" is a suffix (Wrong!)

• Solution:

Score the affixes and remove low-scoring affixes.

Scoring the Affixes

- Scoring metric
 - score(x) = frequency(x) * length(x)

of different words x attaches to

of characters in x

• Retain only affixes whose score > *k*, where *k* is the threshold.

Setting the threshold k

- k is dependent on vocabulary size
- In a larger vocabulary, same affix attaches to larger number of words.
- So, we need to set larger *k* for larger vocabulary system
- For example,
 - English: 50
 - Finnish: 300

(Finnish vocabulary is almost 6 times larger than that of English)

Basic System

- Induce prefixes, suffixes and roots
- Segment the words using the induced morphemes

Inducing Roots

- For each word *w* in the vocabulary, we consider *w* as a root if it is **not divisible** i.e.
 - w cannot be segmented as p+r or r+x,
 where p is a prefix, x is a suffix and r is a word in the vocabulary

Plan for the Talk

- Basic system
 - Segmentation using automatically induced morphemes
- Two extensions to the basic system
 - Handling over-segmentation (addresses Problem 1)
 - Handling orthographic changes (addresses Problem 2)

Over-Segmentation

- "affectionate" = "affection" + "ate"? Correct attachment
- "candidate" = "candid" + "ate"? **Incorrect attachment**
- We propose 2 methods:
 - Relative Word-Root Frequency
 - Suffix Level Similarity

Relative Frequency

Our hypothesis:

• If a word *w* can be segmented as *r*+*a* or *a*+*r*, where *r* is a root and *a* is an affix, then

```
correct-attachment (w, r, a) freq (w) < freq(r)
```

- Inflectional or derivational form of a root word occurs less frequently than the root itself
- Examples
 - freq (reopen) < freq (open) => reopen = re+open
 - freq (candidate) > freq (candid) => candidate / candid+ate

How correct is this hypothesis?

- In other words, does all the inflectional or derivational forms of the root words occur less frequently than the root?
- We randomly chose 387 English words which can be segmented into Prefix+Root or Root+Suffix
- For each word we check **Word-Root Frequency Ratio**

KI'I()	Root+Suffi	Prefix+Roo	Overall
#of words	3 * 4	3 ^t 4	378
WRFR<1	70.1%	88.2%	71.7%

Relaxing the Hypothesis

 To increase the accuracy of the hypothesis we relax it as follows:

Original Hypothesis:

```
correct-attachment (w, r, a) WRFR (w, r) <
```

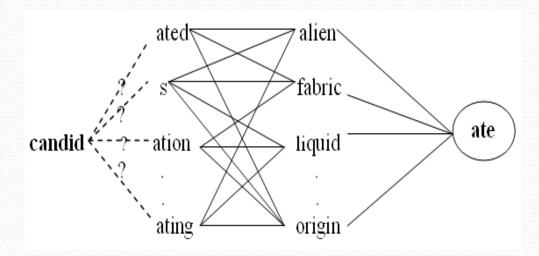
Relaxed Hypothesis:

```
correct-attachment (w, r, a) WRFR (w, r) <
```

 We set the threshold t to 10 for suffixes and 2 for prefixes

Over Segmentation

- We propose 2 methods:
 - Relative Word-Root Frequency
 - Suffix Level Similarity

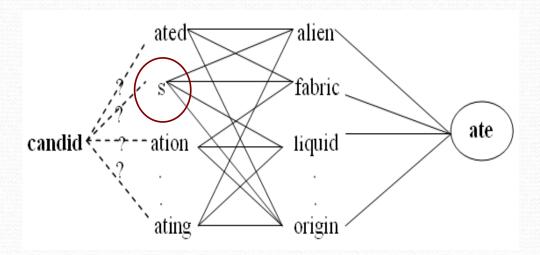

Suffix Level Similarity

Our hypothesis:

• If *w* attaches to a suffix *x*, then *w* should attach to suffixes similar to *x*. i.e.

$$w + x \Rightarrow w + \text{Similar}(x)$$

"candid" + "ate" = "candidate"?


Suffix Level Similarity

Our hypothesis:

• If *w* attaches to a suffix *x*, then *w* should attach to suffixes similar to *x*. i.e.

$$w + x \Rightarrow w + \text{Similar}(x)$$

"candid" + "ate" = "candidate"?

Computing similarity between two suffixes

- How to give more weight to "ated" than "s"?
- Similarity Metric:

Sim(x, y) =
$$P(y | x) * P(x | y) = \frac{n}{n_1} * \frac{n}{n_2}$$
,

where n_1 is the number of words that combine with x n_2 is the number of words that combine with y n_3 is the number of words that combine with both x and y

Suffix Level Similarity

- How to use suffix level similarity to check whether r +
 x is correct?
 - We get 10 most similar suffixes of *x* according to *Sim*.
 - We scale each suffix's *Sim* value linearly between 1-10.
 - Given 10 similar suffixes $x_1, x_2, ..., x_{10}$ we check

$$\sum_{1}^{10} f_i w_i > t,$$

where f_i is 1 if x_i attaches to r.

 w_i is the scaled similarity between suffix x and x_i . t is a predefined threshold (t > 0)

Suffix Level Similarity

- It's **too strict** for words that do not attach to many suffixes.
- We decided to combine WRFR and suffix level similarity to detect incorrect attachments:

-WRFR + β * (suffix level similarity) < 0,

where β is set to be 0.15 for all 4 languages we considered

Plan for the Talk

- Basic system
 - Segmentation using automatically induced morphemes
- Two extensions to the basic system
 - Handling over-segmentation (addresses Problem 1)
 - Handling orthographic changes (addresses Problem 2)

Handling Orthographic Changes

Goal: Segment words like "denial" into "deny"+"al"

• Challenge:

• System does not have any **knowledge** of language-specific orthographic rules like

Handling Orthographic Changes

 Can we generate the orthographic change rules automatically?

Handling Orthographic Changes

- Can we generate the orthographic change rules automatically? Yes, but
- Considering the complexity of the task, we will focus on
 - Change at the morpheme boundary only
 - Change of edit distance 1 (i.e. 1 character insertion or deletion or replacement)
- Our orthographic induction algorithm consists of 3

Step1: Inducing Candidate Allomorphs

- If
 - $\alpha A\beta$ is a word in the vocabulary (e.g. "denial"),
 - β is an induced suffix (e.g. "al"),
 - αB is an induced root (e.g. "deny"),
 - The attachment of β to αB is correct according to relative frequency,

then αA (e.g. "deni") is an allomorph of αB (e.g. "deny")

- The allomorphs generated from at least 2 different suffixes are called candidate allomorphs
- Now we have a list of <candidate allomorph, root, 29

Step 2: Inducing Orthographic Rules

- Each <candidate allomorph, root, suffix> tuple is associated with an orthographic rule:
 - From <denial, deny, al> we learn y:i / _ + al
 - From <social, sock, al> we learn k:i / _ + al wrong!
 - So, "social" = "sock" + "al"?
- We have to filter out erroneous rules

Step 3: Filtering the Rules

- **Goal:** For each suffix *x*, remove the low-frequency rules
- Frequency of a rule *r*,
 # of different <alloworph, root, *x*> generate the rule *r*
- **Remove** *r* if it is generated by less than 15% of the tuples.

Step 3: Filtering the Rules

- Goal: Filter "morphologically undesirable" rules
- If there are two rules like A:B / _ + x and A:C / _ + x, then the rules are morphologically undesirable, because A changes to B and C under the same environment x.
- To filter morphologically undesirable rules,
 - 1. We define the strengthnoy(A rB) = $\frac{1}{\sum_{a} frequency(A:@)}$
 - 2. We then keep only those rules r whose frequency (r) * strength (r) > t

Setting the threshold t

• *t* is dependent on vocabulary size

- For example,
 - English: 4
 - Finnish: 25

(Finnish vocabulary is almost 6 times larger than that of English)

Evaluation

- Results for English and Bengali
- PASCAL Morpho-Challenge results
 - English, Finnish, Turkish

Experimental Setup: Corpora

- English:
 - WSJ and BLLIP
- Bengali:
 - 5 years of news articles from **Prothom Alo**

Experimental Setup: Test Set Creation

- English:
 - 5000 words from our corpus
 - Correct segmentation given by CELEX
- Bengali:
 - 4191 words from our corpus
 - Correct segmentation provided by two linguists

Experimental Setup: Evaluation Metrics

Exact accuracy

• F-score

		English			Bengali			
	Acc	P	R	F	Acc	P	R	F
Linguistica	68.9	84.8	75.7	80.0	36.3	58.2	63.3	60.6
Morphessor	64.9	69.6	85.3	76.6	56.5	89.7	67.4	76.9
Basic sys- tem	68.1	79.4	82.8	81.1	57.7	79.6	81.2	80.4
Relative frequency	74.0	86.4	82.5	84.4	63.2	85.6	79.9	82.7
Suffix level similarity	74.9	88.6	82.3	85.3	66.1	89.7	78.8	83.9
Allomorph detection	78.3	88.3	86.4	87.4	68.3	89.3	81.3	85.1

		Eng	glish		Bengali			
	Acc	P	R	F	Acc	P	R	F
Linguistica	68.9	84.8	75.7	80.0	36.3	58.2	63.3	60.6
Morphessor	64.9	69.6	85.3	76.6	56.5	89.7	67.4	76.9)
Basic sys-	68.1	79.4	82.8	81.1	57.7	79.6	81.2	80.4
tem								
Relative	74.0	86.4	82.5	84.4	63.2	85.6	79.9	82.7
frequency								
Suffix level	74.9	88.6	82.3	85.3	66.1	89.7	78.8	83.9
similarity								
Allomorph	78.3	88.3	86.4	87.4	68.3	89.3	81.3	85.1
detection								

		English			Bengali			
	Acc	P	R	F	Acc	P	R	F
Linguistica	68.9	84.8	75.7	80.0	36.3	58.2	63.3	60.6
Morphessor	64.9	69.6	85.3	76.6	56.5	89.7	67.4	76.9
Basic system	68.1	79.4	82.8	81.1	57.7	79.6	81.2	80.4
Relative frequency	74.0	86.4	82.5	84.4	63.2	85.6	79.9	82.7
Suffix level similarity	74.9	88.6	82.3	85.3	66.1	89.7	78.8	83.9
Allomorph detection	78.3	88.3	86.4	87.4	68.3	89.3	81.3	85.1

		English			Bengali			
	Acc	P	R	F	Acc	P	R	F
Linguistica	68.9	84.8	75.7	80.0	36.3	58.2	63.3	60.6
Morphessor	64.9	69.6	85.3	76.6	56.5	89.7	67.4	76.9
Basic system	68.1	79.4	82.8	81.1	57.7	79.6	81.2/	80.4
Relative frequency	74.0	86.4	82.5	84.4	63.2	85.6	79.9	82.7/
Suffix level similarity	74.9	88.6	82.3	85.3	66.1	89.7	78.8	83.9
Allomorph detection	78.3	88.3	86.4	87.4	68.3	89.3	81.3	85.1

		English			Bengali			
	Acc	P	R	F	Acc	P	R	F
Linguistica	68.9	84.8	75.7	80.0	36.3	58.2	63.3	60.6
Morphessor	64.9	69.6	85.3	76.6	56.5	89.7	67.4	76.9
Basic sys-	68.1	79.4	82.8	81.1	57.7	79.6	81.2	80.4
tem								
Relative	74.0	86.4	82.5/	84.4	63.2	85.6	79.9/	82.7
frequency								
Suffix level	74.9	88.6	82.3	85.3/	66.1	89.7	78.8	83.9/
similarity								
Allomorph detection	78.3	88.3	86.4	87.4	68.3	89.3	81.3	85.1

		English			Bengali			
	Acc	P	R	F	Acc	P	R	F
Linguistica	68.9	84.8	75.7	80.0	36.3	58.2	63.3	60.6
Morphessor	64.9	69.6	85.3	76.6	56.5	89.7	67.4	76.9
Basic system	68.1	79.4	82.8	81.1	57.7	79.6	81.2	80.4
Relative frequency	74.0	86.4	82.5	84.4	63.2	85.6	79.9	82.7
Suffix level similarity	74.9	88.6	82.3	85.3	66.1	89.7	78.8	83.9
Allomorph detection	78.3	88.3	86.4	87.4	68.3	89.3	81.3	85.1

		English			Bengali			
11	Acc	P	R	F	Acc	P	R	F
Linguistica	68.9	84.8	75.7	80.0	36.3	58.2	63.3	60.6
Morphessor	64.9	69.6	85.3	76.6	56.5	89.7	67.4	76.9
Basic sys-	68.1	79.4	82.8	81.1	57.7	79.6	81.2	80.4
tem								
Relative	74.0	86.4	82.5	84.4	63.2	85.6	79.9	82.7
frequency								
Suffix level	74.9	88.6	82.3	85.3	66.1	89.7	78.8	83.9
similarity								
Allomorph	78.3	88.3	86.4	87.4	68.3	89.3	81.3	85.1
detection								

PASCAL Morpho-Challenge Results

- Three languages
 - English
 - Finnish
 - Turkish

	English	Finnish	Turkish
Winner	76.8	64.7	65.3
Our System	79.4	65.2	66.2
Morphessor	66.2	66.4	70.1

Winner for English: Keshava and Pitler's (2006) algorithm

Winner for Finnish and Turkish: Bernhard's (2006) algorithm

Creutz's remark on the PASCAL Challenge:

None of the participants performs well on all 3 languages

	English	Finnish	Turkish
Winner	76.8	64.7	65.3
Our System	79.4	65.2	66.2
Morphessor	66.2	66.4	70.1

Our system outperforms the winners!

• Robustness across different languages

	English	Finnish	Turkish
Winner	76.8	64.7	65.3
Our System	79.4	65.2	66.2
Morphessor	66.2	66.4	70.1

Morphessor slightly outperforms our system for Finnish and Turkish, but what about English?

	English	Finnish	Turkish
Winner	76.8	64.7	65.3
Our System	79.4	65.2	66.2
Morphessor	66.2	66.4	70.1

Morphessor performs poorly for English

Conclusion

- Our system shows robust performance across different languages
 - Outperforms Linguistica and Morphessor for English and Bengali
 - Compares favorably to the winners of the PASCAL datasets

Thank you!