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Standard Machine Learning Approach

Step 1: Classification find an antecedent for each NP]
e train a coreference model that has an antecedent at
two NPs are coreferent

e two NPs are classified as coreferenyif probability = 0.5

Step 2: Antecedent selecti
e find an antecedent for each NPj

» choose the closest preceding noun phrase that is classified
as coreferent with NPj
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How to determine whether an NP has an
antecedent?

Any NP that is part of a coref chain but is not the head of the

chain has an antecedent. It's an anaphoric NP.

King George VI, into aviable monarch.

A renowned speech therapist was summoned to help

the King overcome his speech impediment...

Queen Elizabeth set about transforming her huae and,
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Anaphoricity Determination

determines whether an NP is anaphoric or not

helps improve the precision of a coreference system
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Goal

Improve learning-based coreference systems using

automatically acquired anaphoricity information,

by proposing a new approach to anaphoricity determination
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Plan for the Talk

Existing methods for computing and using anaphoricity info
Our graph-cut-based approach to anaphoricity determination

Evaluation
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Methods for Computing and Using
Anaphoricity Information

Five existing methods
* Ng & Cardie (2002)
Ng (2004)
Luo (2007)
e Denis & Baldridge (2007)
Kleener (2007), Finkel & Manning (2008)
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What do the methods have in common?

Training an anaphoricity model (P,)
e determines the probability that an NP Is anaphoric
e classifies an NP as anaphoric iff probability = 0.5

Training data creation
e texts annotated with coreference information

e one instance for each NP
« positive if the NP is part of a coref chain but not head of chain
« negative otherwise
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How do the methods differ from each other?
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How do the methods differ from each other?

They differ in terms of

e whether they improve the output of P,
- if so, how?

e how anaphoricity info is used by the coreference system
- as hard constraints or as soft constraints?
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X
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Improve P ,'s output?  Used as hard constraint?

| |

NP; Is classified coref system finds an
as anaphoric iff antecedent for NP; iff it is
PA(NP) 2 0.5 classified as anaphoric
Problem

e many anaphoric NPs are misclassified (as non-anaphoric)
- P, is overly conservative in classifying an NP as anaphoric
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Ng (2004)

Improve P ,'s output?  Used as hard constraint?

i 1
NP; Is classified coref system finds an
as anaphorlc Iff antecedent for NP; iff it is
PA(NP)) >® classified as anaphoric

/

decreasing t . more NPs will be classified as anaphoric
Increasingt . fewer NPs will be classified as anaphoric
t is the “conservativeness” parameter
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Ng (2004)

Improve P ,'s output?  Used as hard constraint?

| |

NP; Is classified coref system finds an
as anaphorlc Iff antecedent for NP; iff it is
PA(NP;) >® classified as anaphoric

/

decreasing t . more NPs will be classified as anaphoric
Increasingt . fewer NPs will be classified as anaphoric

select t to use held-out data to maximize coreference
performance (i.e., F-measure)
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Luo (2007)

Improve P A’s output?

Used as hard constraint?

X

X

43




Luo (2007)

Improve P ,'s output?  Used as hard constraint?

Goal
e score an NP partition
- by multiplying the probabilities provided by P, and P

44




Luo (2007)

Improve P ,'s output?  Used as hard constraint?

Goal
e score an NP partition
- by multiplying the probabilities provided by P, and P
e find highest-scored NP patrtition

45




Luo (2007)

Improve P ,'s output?  Used as hard constraint?

Goal
e score an NP partition
- by multiplying the probabilities provided by P, and P
e find highest-scored NP patrtition
» by performing a beam search through the Bell tree




Denis & Baldridge (2007)

Improve P ,'s output?  Used as hard constraint?

4

4
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Denis & Baldridge (2007)

Improve P ,'s output?  Used as hard constraint?

|

coref system finds an
antecedent for NP; iff it is
classified as anaphoric

use Integer Linear Programming (ILP) to perform joint
iInference for anaphoricity determination and coreference
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ILP: A Motivating Example

3NPs: 1,2, 3
P.(1,2)=0.6, P, (1,3)=0.2,P,(2,3)=0.9
P,(1) =0.1,P,(2) =0.9, P,(3) = 0.2
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ILP: A Motivating Example

o NiEsihe i

P.(1,2) = 0.6, P(1, 3) = 02,P,(2, 3) = 0.9
PA(1) = 0.1, Po(2) = 0.9,F5(3) = 0.2

NP 3 is not NP3i§
anaphoric! anaphoric!!!

P, and P.'s outputs don’t seem to be consistent. Why???
e Because they are trained independently of each other

Certain hard constraints need to be enforced

* If P determines that NP; is not coreferent with any NP, then P,
should determine that NP; is non-anaphoric
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ILP for Anaphoricity and Coreference

Goal

e jointly determine anaphoricity and coreference decisions such
that all the desired constraints are satisfied

Improve anaphoricity decisions with automatically computed
coreference information and manually-specified constraints




Kleener (2007), Finkel & Manning (2008)

Improve P ,'s output?  Used as hard constraint?

v v
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Kleener (2007), Finkel & Manning (2008)

Improve P ,'s output?  Used as hard constraint?

/ Ve

Also employ ILP, but additionally impose the transitivity
constraint on the coreference decisions

e A, B are coref and B,C are coref A,C are coreferent




Summary of the Five Methods

Improve P A’'s

Used as hard

output? constraint?
Ng and Cardie (2002) S
Ng (2004) v S
Luo (2007)
Denis and Baldridge (2007) V4 V4
Kleener (2007) / /
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Summary of the Five Methods

Improve P A’s Used as hard
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Can we have a method

Summary of the Five that optimizes F-measure

and exploits P.?

Impl—— 2 B
output? constraint?
Ng and Cardie (2002) X S
Ng (2004) S
Luo (2007)

Denis and Baldridge (2007) (A =

Kleener (2007)

tune t on held-out
coref-annotated data
to optimize F-measure

exploit probabilities
provided by P

do not optimize

does not exploit P F-measure




Cut-Based Anaphoricity Determination

Motivated by our desire to have a method that can
e optimize the desired coreference evaluation metric
e exploit probabilities provided by P




The Problem Setting

Want to partition a set of objects, {X;, X,, ...

sets, Sand T

, X}, Into two
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The Problem Setting

Want to partition a set of objects, {x;, X,, ..., X,}, Into two
sets,Sand T

Given two types of scores:
e Membership scores: memg(x;), mem-(x:)
 captures the affinity of x, to S and T, respectively

- Put similar objects s likely to be Put an object to the set

o § intothe same set (X, Xj) where its membership

score is high

- captures tRe similarity between X; anu x

Goal:
Maximize




Solving this Problem Using MinCut

)
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Solving this Problem Using MinCut

 Efficient algorithms for finding the mincut exist
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Solving this Problem Using MinCut

How to recast anaphoricity determination

as a graph mincut problem?

Efficient algorithms for finding the mincut exist
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Cut-Based Anaphoricity Determination

Not

mem-(x;) Anaphoric
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Cut-Based Anaphoricity Determination
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. What if we run the mincut finding
Cut-Based Anaphorl algorithm on this graph?

Prob. x, is Prob. x, is
anaphoric not anaphoric

= -

Pa(Xy) 1-Palxq)

Anaphoric
P Not

Pa(Xs) 1 - Pa(%s) Anaphoric
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! NP, will be assigned to the
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Prob. x, is Functionally equivalent to
anaphoric Ng & Cardie (2002)
\ N\ =
(=22 0.8

Anaphoric Not
0.2 Anaphoric
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! NP, will be assigned to the
Cut-Based Anaphorl Anaphoric class iff P,(NP;) 2 0.5

Prob. x, is Functionally equivalent to
anaph{ Ng & Cardie (2002)
— - \ - QA/

Too conservative in classifying an
NP as anaphoric

0.3 P 0.7 m

Follow Ng (2004) and introduce t

Anaphoric \
Not
0.2 Anaphoric




Mimicking Ng (2004)

* NP, is classified as anaphoric iff P,(NP;) = t
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Mimicking Ng (2004)

NP, is classified as anaphoric iff P,(NP;) = t
e t Is the “conservativeness” parameter
« tuned on held-out data to maximize coreference F-measure

Goal: modify the edge weights s.t. NP; will be assigned to
the Anaphoric class iff P,(NP;) =2 t

How? Do a linear transformation

But ... we are not happy with just mimicking Ng (2004)
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Incorporating Similarity Scores

* What is a good candidate similarity function?
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Incorporating Similarity Scores

What is a good candidate similarity function?

Two observations:

* If NP; and NP, are likely to be coreferent according to P, then
NP; and NP; are likely to be both anaphoric (except if NP; Is the
head of a coreference chain)

« want mincut finder to assign the NPs to the same set

e If NP; and NP; are unlikely to be coreferent according to P, It's
hard to claim anything regarding their anaphoricity

Use P(NP;,NP)) as the sim(NP;,NP)), but only if
Pc(NP,NP) >t, [tuned jointly with t on held-out data]

Otherwise, set sim(NP;, NP;) to O
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Cut-Based Anaphoricity Determination

An anaphoricity determination method that can
e maximize the desired coreference metric (by tuning t and t,)
e exploit probabilities provided by P (via the sim function)
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Plan for the Talk

Existing methods for computing and using anaphoricity info
Our graph-cut-based approach to anaphoricity determination

Evaluation
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Evaluation: Goal

compare our cut-based method for anaphoricity

determination with existing methods w.r.t. their effectiveness

In Improving a learning-based coreference system
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Experimental Setup

Coreference system [Ng, 2007]
e implements the standard machine learning framework
e 34 features per instance

Features for anaphoricity determination [Ng & Cardie, 2002]
o 37 features per instance

Learning algorithm
e Maximum entropy for training P, and P,
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Experimental Setup (Cont’)

The ACE coreference corpus
e 3 data sets (Broadcast News, Newspaper, Newswire)
e each data set comprises a training set and a test set

NPs extracted automatically

Scoring programs

e MUC (Vilain et al., 1995) and CEAF (Luo, 2005)
- recall, precision, F-measure
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CEAF Results: “No Anaphoricity” Baseline

Broadcast News Newspaper Newswire

RuESpiinpiinpitn g s pr Spe S p e

No anaphoricity

632 492 553 | 645 543 59.0 673 56.1 61.2
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CEAF Results: “No Anaphoricity” Baseline

Broadcast News Newspaper Newswire

R P F|R P F|R P F

No anaphoricity

632 492 553 | 645 543 59.0 | 673 56.1 61.2
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CEAF Results: “No Anaphoricity” Baseline

Broadcast News Newspaper Newswire

R P F|R P F|R P F

No anaphoricity

632 492 553 | 645 543 59.0 673 56.1 61.2
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CEAF Results: “No Anaphoricity” Baseline

Broadcast News Newspaper Newswire

R P F|R P F|R P F

No anaphoricity

632 492 553 | 645 543 59.0 673 56.1 61.2
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CEAF Results: Ng & Cardie (2002) Baseline

Broadcast News Newspaper Newswire
Rt pape o p e R b
No anaphoricity 63.2: 492 55.3 | 645 543 590 | 67.3: 561 612
Ng & Cardie (2002) 559 533 545 | 60.7 563 583 | 606 582 594
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CEAF Results: Ng & Cardie (2002) Baseline

Broadcast News Newspaper Newswire
Rt pape o p e R b
No anaphoricity 63.2: 492 55.3 | 645 543 590 | 67.3: 561 612
Ng & Cardie (2002) 559 533 545 | 60.7 563 583 | 606 582 594

F-measure drops slightly in all cases

e |large drops in recall accompanied by smaller gains in precision

e many anaphoric NPs were misclassified
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CEAF Results: Ng (2004) Baseline

Broadcast News

Newspaper

Newswire

RiEp g

RoipaE

R P F

No anaphoricity

632 492 353

645 543 59.0

673 56.1 61.2

Ng & Cardie (2002)

55.9 5833 545

60.7 56.3 58.3

606 582 59.4

Ng (2004)

625 499 585.5

635 57.0 61.0

656 56.3 60.6
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CEAF Results: Ng (2004) Baseline

Broadcast News

Newspaper

Newswire

RiEp g

RoipaE

R P F

No anaphoricity

632 492 353

645 543 59.0

673 56.1 61.2

Ng & Cardie (2002)

55.9 5833 545

60.7 56.3 58.3

606 582 59.4

Ng (2004)

625 499 585.5

635 57.0 61.0

656 56.3 60.6

requires tuning of t
e reserve 1/3 of the training data for parameter tuning
e train P, and P on remaining 2/3 of the training data
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CEAF Results: Ng (2004) Baseline

Broadcast News

Newspaper

Newswire

RiEp g

RoipaE

R P F

No anaphoricity

632 492 353

645 543 59.0

673 56.1 61.2

Ng & Cardie (2002)

55.9 5833 545

60.7 56.3 58.3

606 582 59.4

Ng (2004)

625 499 585.5

635 57.0 61.0

656 56.3 60.6

requires tuning of t
e reserve 1/3 of the training data for parameter tuning
e train P, and P on remaining 2/3 of the training data

mixed results in comparison to “No Anaphoricity” baseline

e F-measure gains by 0.2% for BNEWS, 1.1% for NPAPER, but
drops by 0.6% for NWIRE
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CEAF Results: Luo (2007) Baseline

Broadcast News Newspaper Newswire
R P F R P F R P F
No anaphoricity 63.2: 492 55.3 | 645 543 590 | 67.3: 561 612
Ng & Cardie (2002) 559 533 545 | 60.7 563 583 | 606 582 594
Ng (2004) 625 499 555 | 635 570 61.0 | 656 56.3 60.6
Luo (2007) 627 511 563 | 646 554 596 | 670 56.8 61.5

123




CEAF Results: Luo (2007) Baseline

Broadcast News Newspaper Newswire
R P F R P F R P F
No anaphoricity 63.2 492 553 | 645 543 59.0 | 673 56.1 61.2
Ng & Cardie (2002) 559 533 545 | 60.7 563 583 | 606 582 594
Ng (2004) 625 499 555 | 635 570 61.0 | 656 56.3 60.6
Luo (2007) 627 511 563 | 646 554 596 | 670 56.8 61.5

In comparison to “No Anaphoricity” baseline

e F-measure improves insignificantly (by 0.3-1.0%)
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Results: Denis & Baldridge (2007) Baseline

Broadcast News Newspaper Newswire
Rt pape o p e R b
No anaphoricity 632 492 553 | 645 543 59.0 | 673 56.1 61.2
Ng & Cardie (2002) 55,9 533 545 | 60.7 563 583 | 606 582 59.4
Ng (2004) 625 499 555 | 635 570 61.0 | 656 56.3 60.6
Luo (2007) 627 511 563 | 646 554 596 | 670 56.8 61.5
Denis & Baldridge (2007) | 63.8 514 56.9 | 626 53.6 578 | 67.0 568 61.5
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Results: Denis & Baldridge (2007) Baseline

Broadcast News Newspaper Newswire
Rt pape o p e R b
No anaphoricity 632 492 553 | 645 543 59.0 | 673 56.1 61.2
Ng & Cardie (2002) 55,9 533 545 | 60.7 563 583 | 606 582 59.4
Ng (2004) 625 499 555 | 635 570 61.0 | 656 56.3 60.6
Luo (2007) 627 511 563 | 646 554 596 | 670 56.8 61.5
Denis & Baldridge (2007) | 63.8 514 56.9 | 626 53.6 578 | 67.0 568 61.5

mixed results in comparison to “No Anaphoricity” baseline

e F-measure rises significantly for BNEWS, drop insignificantly
for NPAPER, and rises insignificantly for NWIRE
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CEAF Results: Kleener (2007) Baseline

Broadcast News Newspaper Newswire
Rt pape o p e R b
No anaphoricity 632 492 553 | 645 543 59.0 | 673 56.1 61.2
Ng & Cardie (2002) 55,9 533 545 | 60.7 563 583 | 606 582 59.4
Ng (2004) 625 499 555 | 635 570 61.0 | 656 56.3 60.6
Luo (2007) 627 511 563 | 646 554 596 | 670 56.8 61.5
Denis & Baldridge (2007) | 63.8 514 56.9 | 626 53.6 578 | 670 568 61.5
Kleener (2007) 632 513 56.7 | 626 53.6 578 | 66.7 56.7 613
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CEAF Results: Kleener (2007) Baseline

Broadcast News Newspaper Newswire
R P F R P F R P F
No anaphoricity 63.2:: 492 85,3 1645 54.3 590 > 67.3 561 612
Ng & Cardie (2002) 559 533 545 | 60.7 563 583 | 606 582 594
Ng (2004) 625 499 555 | 635 570 61.0 | 656 56.3 60.6
Luo (2007) 627 511 563 | 646 554 596 | 670 568 61.5
Denis & Baldridge (2007) | 63.8 514 56.9 | 626 53.6 578 | 67.0 568 61.5
Kleener (2007) 632 513 56.7 | 626 53.6 578 | 66.7 56.7 613

In comparison to Denis & Baldridge baseline,
e F-measure never improves, recall slightly deteriorates
e transitivity constraints tend to produce smaller clusters
e enforcing transitivity does not improve coreference performance
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CEAF Results: Graph Minimum Cut

Broadcast News Newspaper Newswire
Rt pape o p e R b
No anaphoricity 632 492 553 | 645 543 59.0 | 673 56.1 61.2
Ng & Cardie (2002) 55,9 533 545 | 60.7 563 583 | 606 582 59.4
Ng (2004) 625 499 555 | 635 570 61.0 | 656 56.3 60.6
Luo (2007) 627 511 563 | 646 554 596 | 670 56.8 61.5
Denis & Baldridge (2007) | 63.8 514 56.9 | 626 53.6 578 | 670 568 61.5
Kleener (2007) 632 513 56.7 | 626 536 578 | 66.7 56.7 613
Graph Minimum Cut 614 576 594 | 641 594 617 | 657 619 63.8

1/3 of training data for joint tuning of t and t,; 2/3 for training P, and P
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CEAF Results: Graph Minimum Cut

Broadcast News Newspaper Newswire
Rt pape o p e R b
No anaphoricity 632 492 553 | 645 543 59.0 | 673 56.1 61.2
Ng & Cardie (2002) 55,9 533 545 | 60.7 563 583 | 606 582 59.4
Ng (2004) 625 499 555 | 635 570 61.0 | 656 56.3 60.6
Luo (2007) 627 511 563 | 646 554 596 | 670 56.8 61.5
Denis & Baldridge (2007) | 63.8 514 56.9 | 626 53.6 578 | 670 568 61.5
Kleener (2007) 632 513 56.7 | 626 536 578 | 66.7 56.7 613
Graph Minimum Cut 614 576 594 | 641 594 617 | 657 619 63.8

1/3 of training data for joint tuning of t and t,; 2/3 for training P, and P
significant improvement over “No Anaphoricity” baseline
e |large gains in precision and smaller drops in recall
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CEAF Results: Graph Minimum Cut

Broadcast News Newspaper Newswire
Rt pape o p e R b
No anaphoricity 632 492 553 | 645 543 59.0 | 673 56.1 61.2
Ng & Cardie (2002) 55,9 533 545 | 60.7 563 583 | 606 582 59.4
Ng (2004) 625 499 555 | 635 570 61.0 | 656 56.3 60.6
Luo (2007) 627 511 563 | 646 554 596 | 670 56.8 61.5
Denis & Baldridge (2007) | 63.8 514 56.9 | 626 53.6 578 | 67.0 568 61.5
Kleener (2007) 632 513 56.7 | 626 536 578 | 66.7 56.7 613
Graph Minimum Cut 614 576 594 | 641 594 617 | 657 619 63.8

1/3 of training data for joint tuning of t and t,; 2/3 for training P, and P
significant improvement over “No Anaphoricity” baseline
e |large gains in precision and smaller drops in recall
significant improvement over best baseline (D&B)
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CEAF Results: Graph Minimum Cut

Broadcast News Newspaper Newswire
R P F R P F R P F
No anaphoricity 632 492 553 | 645 543 59.0 | 673 56.1 612
Ng & Cardie (2002) 559 533 545 | 60.7 563 583 | 606 582 594
Ng (2004) 625 499 555 | 635 570 61.0 | 656 56.3 60.6
Luo (2007) 627 511 563 | 646 554 596 | 670 568 615
Denis & Baldridge (2007) | 638 514 569 | 626 536 578 | 670 56.8 61.5
Kleener (2007) 632 513 56.7 | 626 53.6 578 | 66.7 56.7 613
Graph Minimum Cut 614 576 594 | 641 594 61.7 | 657 619 63.8

1/3 of training data for joint tuning of t and t,; 2/3 for training P, and P
significant improvement over “No Anaphoricity” baseline
e |large gains in precision and smaller drops in recall
significant improvement over best baseline (D&B)
best F-measure score achieved for each dataset 132




Summary

Proposed a graph-cut-based approach to anaphoricity
determination that

e directly optimizes the desired coreference evaluation metric
e exploits the probabilities provided by the coreference model

e achieves the best results on all three ACE datasets according
to both the MUC scorer and the CEAF scorer

e provides a flexible mechanism for co-ordinating anaphoricity
and coreference decisions
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