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� Step 1: Classification                                          
� train a coreference model, PC, to determine the probability that 

two NPs are coreferent
� two NPs are classified as coreferent iff probability ≥ 0.5

� Step 2: Antecedent selection
� find an antecedent for each NPj

� choose the closest preceding noun phrase that is classified 
as coreferent with NPj

Standard Machine Learning Approach

find an antecedent for each NPj
that has an antecedent

[Queen Elizabeth] set about transforming [her] [husband], ... 

coref
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Queen Elizabeth set about transforming her husband, 

King George VI, into a viable monarch.  

A renowned speech therapist was summoned to help

the King overcome his speech impediment... 

How to determine whether an NP has an 

antecedent?

Any NP that is part of a coref chain but is not the head of the 
chain has an antecedent. It’s an anaphoric NP.
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Anaphoricity Determination

� determines whether an NP is anaphoric or not

� helps improve the precision of a coreference system
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Goal

Improve learning-based coreference systems using 
automatically acquired anaphoricity information,                     

by proposing a new approach to anaphoricity determination
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� Existing methods for computing and using anaphoricity info

� Our graph-cut-based approach to anaphoricity determination

� Evaluation

Plan for the Talk
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Methods for Computing and Using 

Anaphoricity Information

� Five existing methods
� Ng & Cardie (2002)
� Ng (2004)
� Luo (2007)
� Denis & Baldridge (2007)
� Kleener (2007), Finkel & Manning (2008)
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What do the methods have in common?

� Training an anaphoricity model (PA)
� determines the probability that an NP is anaphoric
� classifies an NP as anaphoric iff probability ≥ 0.5

� Training data creation
� texts annotated with coreference information
� one instance for each NP

� positive if the NP is part of a coref chain but not head of chain
� negative otherwise
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How do the methods differ from each other?

� They differ in terms of

� whether they improve the output of PA

� if so, how?

� how anaphoricity info is used by the coreference system
� as hard constraints or as soft constraints?
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� Problem
� many anaphoric NPs are misclassified (as non-anaphoric)

� PA is overly conservative in classifying an NP as anaphoric

 Improve P A’s output? Used as hard constraint?  

   
 

 

Ng & Cardie (2002)

NPj is classified 
as anaphoric iff
PA(NPj) ≥ 0.5

coref system finds an 
antecedent for NPj iff it is 
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 Improve P A’s output? Used as hard constraint?  

   
 

 

� decreasing t Ł more NPs will be classified as anaphoric
� increasing t Ł fewer NPs will be classified as anaphoric
� t is the “conservativeness” parameter

Ng (2004)

NPj is classified 
as anaphoric iff

PA(NPj) ≥ t

coref system finds an 
antecedent for NPj iff it is 
classified as anaphoric



42

 Improve P A’s output? Used as hard constraint?  

   
 

 

� decreasing t Ł more NPs will be classified as anaphoric
� increasing t Ł fewer NPs will be classified as anaphoric

� select t to use held-out data to maximize coreference
performance (i.e., F-measure) 

Ng (2004)

NPj is classified 
as anaphoric iff

PA(NPj) ≥ t

coref system finds an 
antecedent for NPj iff it is 
classified as anaphoric
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 Improve P A’s output? Used as hard constraint?  

   
 

 

� Goal
� score an NP partition

� by multiplying the probabilities provided by  PA and PC

� find highest-scored NP partition
� by performing a beam search through the Bell tree

Luo (2007)
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 Improve P A’s output? Used as hard constraint?  

   
 

 

Denis & Baldridge (2007)

coref system finds an 
antecedent for NPj iff it is 
classified as anaphoric
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 Improve P A’s output? Used as hard constraint?  

   
 

 

� use Integer Linear Programming (ILP) to perform joint 
inference for anaphoricity determination and coreference

Denis & Baldridge (2007)

coref system finds an 
antecedent for NPj iff it is 
classified as anaphoric



50

ILP: A Motivating Example

� 3 NPs: 1, 2, 3
� Pc(1, 2) = 0.6, Pc(1, 3) = 0.2, Pc(2, 3) = 0.9

PA(1) = 0.1, PA(2) = 0.9, PA(3) = 0.2
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ILP: A Motivating Example

� 3 NPs: 1, 2, 3
� Pc(1, 2) = 0.6, Pc(1, 3) = 0.2, Pc(2, 3) = 0.9

PA(1) = 0.1, PA(2) = 0.9, PA(3) = 0.2

� PA and PC’s outputs don’t seem to be consistent. Why???
� Because they are trained independently of each other

� Certain hard constraints need to be enforced
� If PC determines that NPj is not coreferent with any NP, then PA

should determine that NPj is non-anaphoric

� …

NP 3 is not
anaphoric!

NP 3 is 
anaphoric!!!
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ILP for Anaphoricity and Coreference

� Goal
� jointly determine anaphoricity and coreference decisions such 

that all the desired constraints are satisfied

� improve anaphoricity decisions with automatically computed 
coreference information and manually-specified constraints
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Kleener (2007), Finkel & Manning (2008)
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� Also employ ILP, but additionally impose the transitivity
constraint on the coreference decisions
� A, B are coref and B,C are coref àààà A,C are coreferent

 Improve P A’s output? Used as hard constraint?  

   
 

 

Kleener (2007), Finkel & Manning (2008)
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Summary of the Five Methods

 Improve P A’s 
output? 

Used as hard 
constraint? 

Ng and Cardie (2002)   

Ng (2004)   

Luo (2007)   

Denis and Baldridge (2007)   

Kleener (2007)   
 

 

exploit probabilities 
provided by PC

do not optimize              
F-measure

does not exploit PC

Can we have a method 
that optimizes F-measure 
and exploits PC?

tune t on held-out 
coref-annotated data 

to optimize F-measure
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Cut-Based Anaphoricity Determination

� Motivated by our desire to have a method that can
� optimize the desired coreference evaluation metric
� exploit probabilities provided by PC
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The Problem Setting

� Want to partition a set of objects, {x1, x2, …, xn}, into two 
sets, S and T

� Given two types of scores:
� Membership scores: memS(xi), memT(xi)

� captures the affinity of xi to S and T, respectively
� High memS(xi) à xi is likely to be in S

� Similarity scores: sim(xi, xj)  
� captures the similarity between xi and xj

� Goal:
Maximize ∑∑∑

∈∈∈∈

++
Tx

T
Sx

S
TxSx

ji xmemxmemxxsim
ji

)()(),(
,

Put similar objects 
into the same set

Put an object to the set 
where its membership 

score is high
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Solving this Problem Using MinCut

� Efficient algorithms for finding the mincut exist

s t

x1

x2

x3
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3
2

How to recast anaphoricity determination 
as a graph mincut problem?
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Cut-Based Anaphoricity Determination
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NPi will be assigned to the 
Anaphoric class iff PA(NPi) ≥ 0.5

Functionally equivalent to          
Ng & Cardie (2002)

Too conservative in classifying an 
NP as anaphoric

Follow Ng (2004) and introduce t
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Mimicking Ng (2004)

� NPi is classified as anaphoric iff PA(NPi) ≥ t
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Mimicking Ng (2004)

� NPi is classified as anaphoric iff PA(NPi) ≥ t
� t is the “conservativeness” parameter

� tuned on held-out data to maximize coreference F-measure

� Goal: modify the edge weights s.t. NPi will be assigned to  
the Anaphoric class iff PA(NPi) ≥ t

� How? Do a linear transformation

� But … we are not happy with just mimicking Ng (2004)
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Incorporating Similarity Scores

� What is a good candidate similarity function?

� Two observations:
� If NPi and NPj are likely to be coreferent according to PC, then 

NPi and NPj are likely to be both anaphoric (except if NPi is the 
head of a coreference chain) 
� want mincut finder to assign the NPs to the same set

� If NPi and NPj are unlikely to be coreferent according to PC, it’s 
hard to claim anything regarding their anaphoricity

� Use PC(NPi,NPj) as the sim(NPi,NPj), but only if                 
PC(NPi,NPj) > t2     [tuned jointly with t on held-out data]

� Otherwise, set sim(NPi, NPj) to 0
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Cut-Based Anaphoricity Determination

� An anaphoricity determination method that can
� maximize the desired coreference metric (by tuning t and t2)
� exploit probabilities provided by PC (via the sim function)
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� Existing methods for computing and using anaphoricity info

� Our graph-cut-based approach to anaphoricity determination

� Evaluation

Plan for the Talk
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Evaluation: Goal

� compare our cut-based method for anaphoricity
determination with existing methods w.r.t. their effectiveness 
in improving a learning-based coreference system
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Experimental Setup

� Coreference system [Ng, 2007]

� implements the standard machine learning framework
� 34 features per instance

� Features for anaphoricity determination [Ng & Cardie, 2002]

� 37 features per instance

� Learning algorithm
� Maximum entropy for training PA and PC
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Experimental Setup (Cont’)

� The ACE coreference corpus
� 3 data sets (Broadcast News, Newspaper, Newswire)
� each data set comprises a training set and a test set

� NPs extracted automatically

� Scoring programs
� MUC (Vilain et al., 1995) and CEAF (Luo, 2005)

� recall, precision, F-measure
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 Broadcast News Newspaper Newswire 
 R P F R P F R P F 

No anaphoricity 63.2 49.2 55.3 64.5 54.3 59.0 67.3 56.1 61.2 

Ng & Cardie (2002) 55.9 53.3 54.5 60.7 56.3 58.3 60.6 58.2 59.4 

Ng (2004) 62.5 49.9 55.5 63.5 57.0 61.0 65.6 56.3 60.6 

Luo (2007) 62.7 51.1 56.3 64.6 55.4 59.6 67.0 56.8 61.5 

Denis & Baldridge (2007) 63.8 51.4 56.9 62.6 53.6 57.8 67.0 56.8 61.5 

Kleener (2007) 63.2 51.3 56.7 62.6 53.6 57.8 66.7 56.7 61.3 

Graph Minimum Cut 61.4 57.6 59.4 64.1 59.4 61.7 65.7 61.9 63.8 

CEAF Results: “No Anaphoricity” Baseline
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No anaphoricity 63.2 49.2 55.3 64.5 54.3 59.0 67.3 56.1 61.2 

Ng & Cardie (2002) 55.9 53.3 54.5 60.7 56.3 58.3 60.6 58.2 59.4 
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Kleener (2007) 63.2 51.3 56.7 62.6 53.6 57.8 66.7 56.7 61.3 

Graph Minimum Cut 61.4 57.6 59.4 64.1 59.4 61.7 65.7 61.9 63.8 

CEAF Results: Ng & Cardie (2002) Baseline

� F-measure drops slightly in all cases
� large drops in recall accompanied by smaller gains in precision
� many anaphoric NPs were misclassified
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Ng (2004) 62.5 49.9 55.5 63.5 57.0 61.0 65.6 56.3 60.6 
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Kleener (2007) 63.2 51.3 56.7 62.6 53.6 57.8 66.7 56.7 61.3 

Graph Minimum Cut 61.4 57.6 59.4 64.1 59.4 61.7 65.7 61.9 63.8 

CEAF Results: Ng (2004) Baseline

� requires tuning of t
� reserve 1/3 of the training data for parameter tuning
� train PA and PC on remaining 2/3 of the training data

� mixed results in comparison to “No Anaphoricity” baseline
� F-measure gains by 0.2% for BNEWS, 1.1% for NPAPER, but 

drops by 0.6% for NWIRE
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Kleener (2007) 63.2 51.3 56.7 62.6 53.6 57.8 66.7 56.7 61.3 

Graph Minimum Cut 61.4 57.6 59.4 64.1 59.4 61.7 65.7 61.9 63.8 

CEAF Results: Luo (2007) Baseline

� in comparison to “No Anaphoricity” baseline
� F-measure improves insignificantly (by 0.3-1.0%)
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Results: Denis & Baldridge (2007) Baseline



126

 Broadcast News Newspaper Newswire 
 R P F R P F R P F 

No anaphoricity 63.2 49.2 55.3 64.5 54.3 59.0 67.3 56.1 61.2 

Ng & Cardie (2002) 55.9 53.3 54.5 60.7 56.3 58.3 60.6 58.2 59.4 
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Denis & Baldridge (2007) 63.8 51.4 56.9 62.6 53.6 57.8 67.0 56.8 61.5 

Kleener (2007) 63.2 51.3 56.7 62.6 53.6 57.8 66.7 56.7 61.3 

Graph Minimum Cut 61.4 57.6 59.4 64.1 59.4 61.7 65.7 61.9 63.8 

� mixed results in comparison to “No Anaphoricity” baseline
� F-measure rises significantly for BNEWS, drop insignificantly 

for NPAPER, and rises insignificantly for NWIRE

Results: Denis & Baldridge (2007) Baseline
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CEAF Results: Kleener (2007) Baseline

� in comparison to Denis & Baldridge baseline,
� F-measure never improves, recall slightly deteriorates
� transitivity constraints tend to produce smaller clusters
� enforcing transitivity does not improve coreference performance
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� 1/3 of training data for joint tuning of t and t2; 2/3 for training PA and PC

CEAF Results: Graph Minimum Cut
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Kleener (2007) 63.2 51.3 56.7 62.6 53.6 57.8 66.7 56.7 61.3 

Graph Minimum Cut 61.4 57.6 59.4 64.1 59.4 61.7 65.7 61.9 63.8 

� 1/3 of training data for joint tuning of t and t2; 2/3 for training PA and PC

� significant improvement over “No Anaphoricity” baseline
� large gains in precision and smaller drops in recall

� significant improvement over best baseline (D&B)
� best F-measure score achieved for each dataset

CEAF Results: Graph Minimum Cut



133

Summary

� Proposed a graph-cut-based approach to anaphoricity
determination that

� directly optimizes the desired coreference evaluation metric

� exploits the probabilities provided by the coreference model

� achieves the best results on all three ACE datasets according 
to both the MUC scorer and the CEAF scorer

� provides a flexible mechanism for co-ordinating anaphoricity
and coreference decisions


