Graph-Cut-Based Anaphoricity Determination for Coreference Resolution

Vincent Ng
Human Language Technology Research Institute
University of Texas at Dallas

Identify the noun phrases (NPs) that refer to the same entity

Queen Elizabeth set about transforming her husband, King George VI, into a viable monarch. A renowned speech therapist was summoned to help the King overcome his speech impediment...

Identify the noun phrases (NPs) that refer to the same entity

Queen Elizabeth set about transforming her husband, King George VI, into a viable monarch. A renowned speech therapist was summoned to help the King overcome his speech impediment...

Identify the noun phrases (NPs) that refer to the same entity

Queen Elizabeth set about transforming her husband, King George VI, into a viable monarch. A renowned speech therapist was summoned to help the King overcome his speech impediment...

Identify the noun phrases (NPs) that refer to the same entity

Queen Elizabeth set about transforming her husband, King George VI, into a viable monarch. A renowned speech therapist was summoned to help the King overcome his speech impediment...

Identify the noun phrases (NPs) that refer to the same entity

Queen Elizabeth set about transforming her husband, King George VI, into a viable monarch. A renowned speech therapist was summoned to help the King overcome his speech impediment...

Step 1: Classification

- train a coreference model, P_c, to determine the probability that two NPs are coreferent
- two NPs are classified as coreferent iff probability ≥ 0.5

Step 1: Classification

- train a coreference model, P_c, to determine the probability that two NPs are coreferent
- two NPs are classified as coreferent iff probability ≥ 0.5

Step 2: Antecedent selection

find an antecedent for each NP_i

Step 1: Classification

- train a coreference model, P_c, to determine the probability that two NPs are coreferent
- two NPs are classified as coreferent iff probability ≥ 0.5

Step 2: Antecedent selection

- find an antecedent for each NP_i
 - choose the closest preceding noun phrase that is classified as coreferent with NP_i

Step 1: Classification

- train a coreference model, P_c, to determine the probability that two NPs are coreferent
- two NPs are classified as coreferent iff probability ≥ 0.5

Step 2: Antecedent selection

- find an antecedent for each NP_i
 - choose the closest preceding noun phrase that is classified as coreferent with NP_i

coref

[Queen Elizabeth] set about transforming [her] [husband], ...

Step 1: Classification

- train a coreference model, P_c, to determine the probability that two NPs are coreferent
- two NPs are classified as coreferent iff probability ≥ 0.5

Step 2: Antecedent selection

- find an antecedent for each NP_j
 - choose the closest preceding noun phrase that is classified as coreferent with NP_i

coref

[Queen Elizabeth] set about transforming [her] [husband], ...

- Step 1: Classification
 - train a coreference model two NPs are coreferent

find an antecedent for each NPj that has an antecedent

at

- two NPs are classified as coreferent of probability ≥ 0.5
- Step 2: Antecedent selection
 - find an antecedent for each NP_i
 - choose the closest preceding noun phrase that is classified as coreferent with NP_i

coref

[Queen Elizabeth] set about transforming [her] [husband], ...

Queen Elizabeth set about transforming her husband, King George VI, into a viable monarch. Logue, a renowned speech therapist, was summoned to help the King overcome his speech impediment...

Queen Elizabeth set about transforming her husband,

King George VI, into a viable monarch.

A renowned speech therapist, was summoned to help

Queen Elizabeth set about transforming her husband,

King George VI, into a viable monarch.

A renowned speech therapist, was summoned to help

Queen Elizabeth set about transforming her husband,

King George VI, into a viable monarch.

A renowned speech therapist was summoned to help

Queen Elizabeth set about transforming her busband,

King George VI, into a viable monarch.

A renowned speech therapist was summoned to help

Queen Elizabeth set about transforming her busband,

King George VI, into a viable monarch.

A renowned speech therapist was summoned to help

Any NP that is part of a coref chain but is not the head of the chain has an antecedent. It's an anaphoric NP.

Queen Elizabeth set about transforming her husband,

King George VI, into a viable monarch.

A renowned speech therapist was summoned to help

Anaphoricity Determination

- determines whether an NP is anaphoric or not
- helps improve the precision of a coreference system

Goal

Improve learning-based coreference systems using automatically acquired anaphoricity information, by proposing a new approach to anaphoricity determination

Plan for the Talk

- Existing methods for computing and using anaphoricity info
- Our graph-cut-based approach to anaphoricity determination
- Evaluation

Methods for Computing and Using Anaphoricity Information

- Five existing methods
 - Ng & Cardie (2002)
 - Ng (2004)
 - Luo (2007)
 - Denis & Baldridge (2007)
 - Kleener (2007), Finkel & Manning (2008)

What do the methods have in common?

What do the methods have in common?

- Training an anaphoricity model (P_A)
 - determines the probability that an NP is anaphoric
 - classifies an NP as anaphoric iff probability ≥ 0.5

What do the methods have in common?

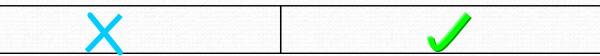
- Training an anaphoricity model (P_A)
 - determines the probability that an NP is anaphoric
 - classifies an NP as anaphoric iff probability ≥ 0.5
- Training data creation
 - texts annotated with coreference information
 - one instance for each NP
 - positive if the NP is part of a coref chain but not head of chain
 - negative otherwise

- They differ in terms of
 - whether they improve the output of P_A

- They differ in terms of
 - whether they improve the output of P_A
 - if so, how?

- They differ in terms of
 - whether they improve the output of P_A
 - if so, how?
 - how anaphoricity info is used by the coreference system
 - as hard constraints or as soft constraints?

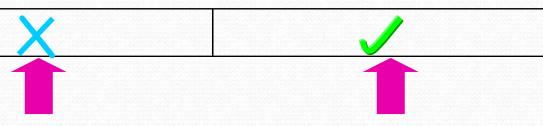
Improve P_A's output? Used as hard constraint?



Improve P_A's output? Used as hard constraint?

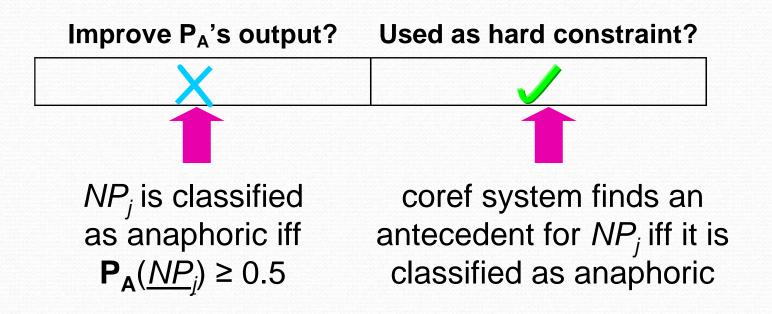
 NP_j is classified as anaphoric iff $\mathbf{P_A}(\underline{NP_i}) \ge 0.5$

Improve P_A 's output? Used as hard constraint?

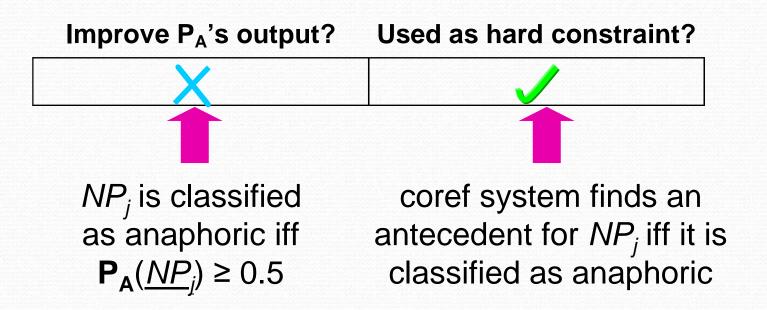


 NP_j is classified as anaphoric iff $\mathbf{P_A}(\underline{NP_j}) \ge 0.5$

coref system finds an antecedent for NP_j iff it is classified as anaphoric

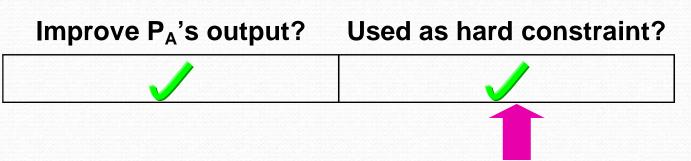


- Problem
 - many anaphoric NPs are misclassified (as non-anaphoric)

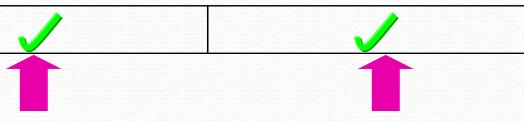


- Problem
 - many anaphoric NPs are misclassified (as non-anaphoric)
 - P_A is overly conservative in classifying an NP as anaphoric

Improve P_A's output? Used as hard constraint?

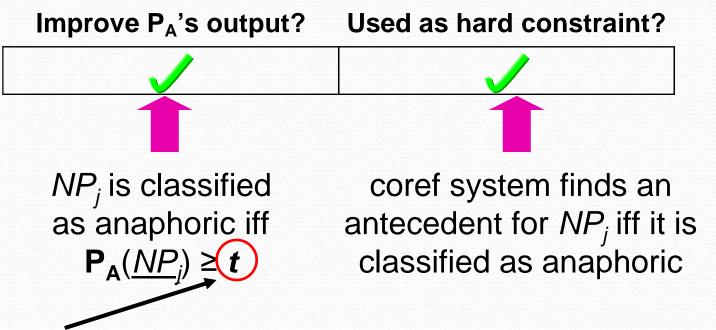


coref system finds an antecedent for NP_j iff it is classified as anaphoric

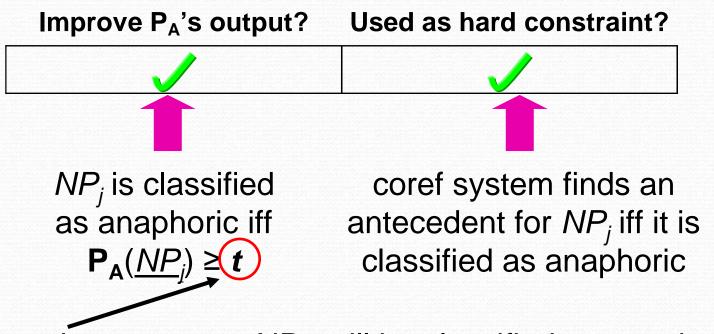


 NP_j is classified as anaphoric iff $\mathbf{P}_{\mathbf{A}}(\underline{NP_j}) \geq \mathbf{t}$

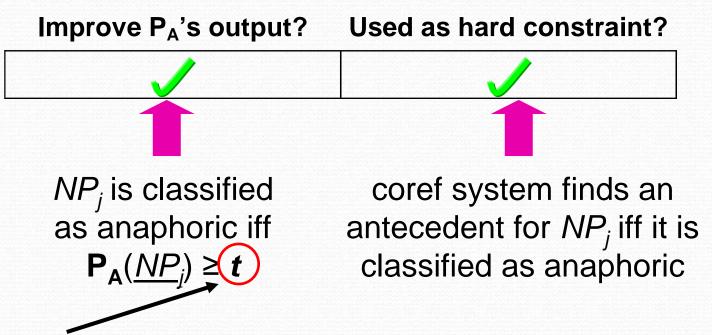
coref system finds an antecedent for NP_j iff it is classified as anaphoric



- decreasing t \(\mathbb{t} \) more NPs will be classified as anaphoric
- increasing t ± fewer NPs will be classified as anaphoric

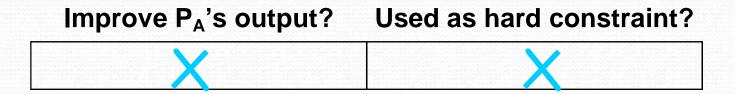


- decreasing t \(\mathbb{t} \) more NPs will be classified as anaphoric
- increasing t ½ fewer NPs will be classified as anaphoric
- t is the "conservativeness" parameter

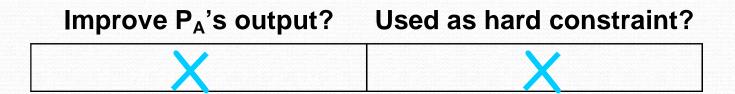


- decreasing t \(\mathbb{L} \) more NPs will be classified as anaphoric
- increasing t ½ fewer NPs will be classified as anaphoric
- select t to use held-out data to maximize coreference performance (i.e., F-measure)

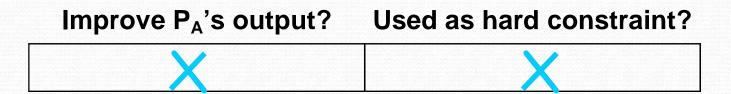
Improve P_A's output? Used as hard constraint?



- Goal
 - score an NP partition
 - by multiplying the probabilities provided by P_A and P_C



- Goal
 - score an NP partition
 - by multiplying the probabilities provided by P_A and P_C
 - find highest-scored NP partition



- Goal
 - score an NP partition
 - by multiplying the probabilities provided by P_A and P_C
 - find highest-scored NP partition
 - by performing a beam search through the Bell tree

Denis & Baldridge (2007)

Improve P_A's output? Used as hard constraint?

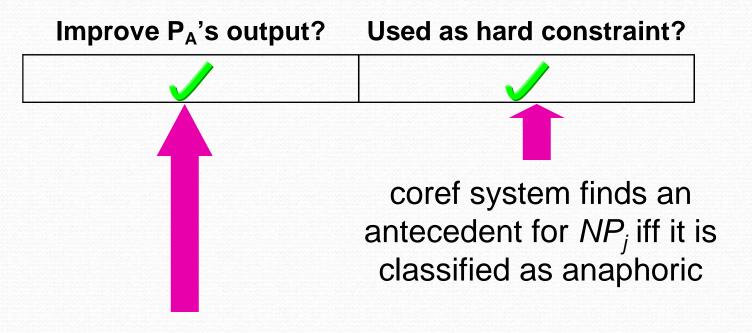
Denis & Baldridge (2007)

Improve P_A's output?

Used as hard constraint?

coref system finds an antecedent for NP_j iff it is classified as anaphoric

Denis & Baldridge (2007)



 use Integer Linear Programming (ILP) to perform joint inference for anaphoricity determination and coreference

- 3 NPs: 1, 2, 3
- $P_c(1, 2) = 0.6$, $P_c(1, 3) = 0.2$, $P_c(2, 3) = 0.9$ • $P_A(1) = 0.1$, $P_A(2) = 0.9$, $P_A(3) = 0.2$

- 3 NPs: 1, 2, 3
- $P_c(1, 2) = 0.6$, $P_c(1, 3) = 0.2$, $P_c(2, 3) = 0.9$ • $P_A(1) = 0.1$, $P_A(2) = 0.9$, $P_A(3) = 0.2$

NP 3 is anaphoric!!!

• 3 NPs: 1, 2, 3

• $P_c(1, 2) = 0.6$, $P_c(1, 3) = 0.2$, $P_c(2, 3) = 0.9$ • $P_A(1) = 0.1$, $P_A(2) = 0.9$, $P_A(3) = 0.2$

NP 3 is **not** anaphoric!

NP 3 is anaphoric!!!

- 3 NPs: 1, 2, 3
- $P_c(1, 2) = 0.6$, $P_c(1, 3) = 0.2$, $P_c(2, 3) = 0.9$ • $P_A(1) = 0.1$, $P_A(2) = 0.9$, $P_A(3) = 0.2$

NP 3 is **not** anaphoric!

NP 3 is anaphoric!!!

• P_A and P_C's outputs don't seem to be consistent. Why???

- 3 NPs: 1, 2, 3
- $P_c(1, 2) = 0.6$, $P_c(1, 3) = 0.2$, $P_c(2, 3) = 0.9$

 $P_A(1) = 0.1, P_A(2) = 0.9, P_A(3) = 0.2$

NP 3 is **not** anaphoric!

NP 3 is anaphoric!!!

- P_A and P_C 's outputs don't seem to be consistent. Why???
 - Because they are trained independently of each other

- 3 NPs: 1, 2, 3
- $P_c(1, 2) = 0.6$, $P_c(1, 3) = 0.2$, $P_c(2, 3) = 0.9$

 $P_A(1) = 0.1, P_A(2) = 0.9, P_A(3) = 0.2$

NP 3 is **not** anaphoric!

NP 3 is anaphoric!!!

- P_A and P_C's outputs don't seem to be consistent. Why???
 - Because they are trained independently of each other
- Certain hard constraints need to be enforced
 - If P_c determines that NP_j is not coreferent with any NP, then P_A should determine that NP_j is non-anaphoric

• ...

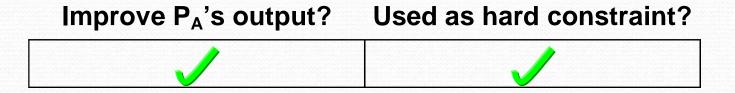
ILP for Anaphoricity and Coreference

- Goal
 - jointly determine anaphoricity and coreference decisions such that all the desired constraints are satisfied
- improve anaphoricity decisions with automatically computed coreference information and manually-specified constraints

Kleener (2007), Finkel & Manning (2008)

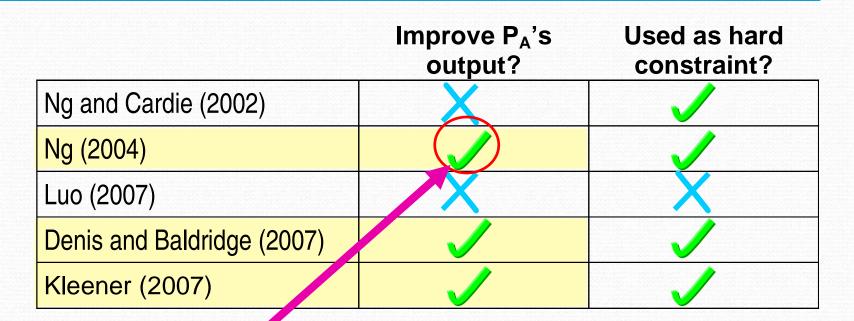
Improve P_A's output? Used as hard constraint?

Kleener (2007), Finkel & Manning (2008)

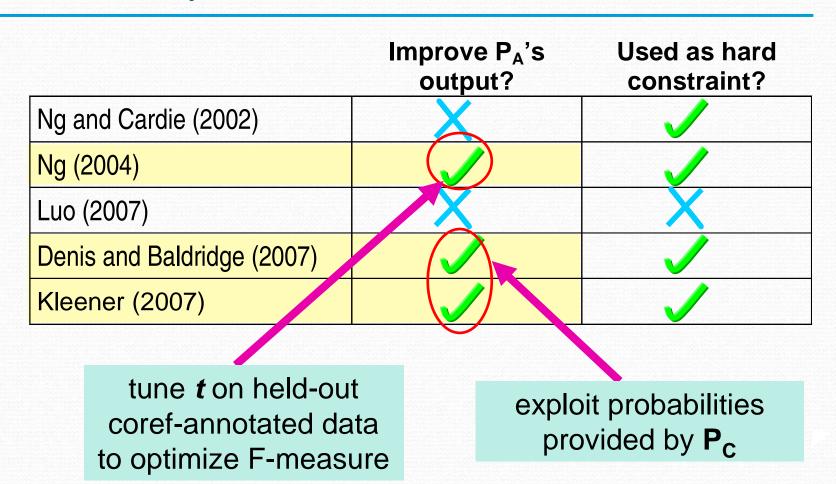


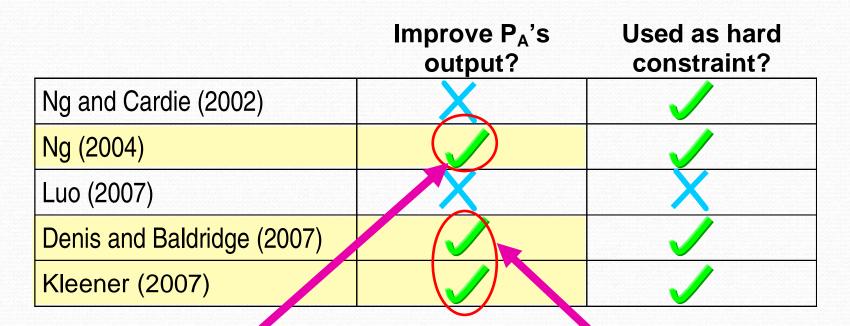
- Also employ ILP, but additionally impose the transitivity constraint on the coreference decisions
 - A, B are coref and B,C are coref
 A,C are coreferent

	Improve P _A 's output?	Used as hard constraint?
Ng and Cardie (2002)		
Ng (2004)		
Luo (2007)	X	X
Denis and Baldridge (2007)		
Kleener (2007)		



tune *t* on held-out coref-annotated data to optimize F-measure

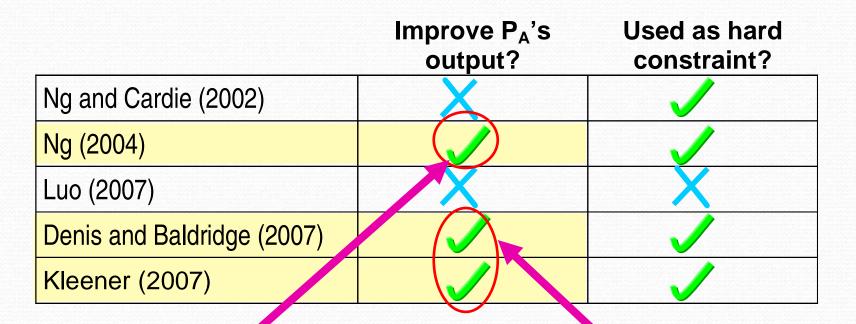




tune *t* on held-out coref-annotated data to optimize F-measure

exploit probabilities provided by **P**_C

do **not** optimize F-measure



tune *t* on held-out coref-annotated data to optimize F-measure

does not exploit Pc

exploit probabilities provided by **P**_C

do **not** optimize F-measure

Summary of the Five

Can we have a method that optimizes F-measure and exploits P_c?

 Ng and Cardie (2002)
 Constraint?

 Ng (2004)
 Image: Constraint in the constraint in

tune *t* on held-out coref-annotated data to optimize F-measure

does not exploit Pc

exploit probabilities provided by **P**_C

do **not** optimize F-measure

Cut-Based Anaphoricity Determination

- Motivated by our desire to have a method that can
 - optimize the desired coreference evaluation metric
 - exploit probabilities provided by P_c

Want to partition a set of objects, {x₁, x₂, ..., x_n}, into two sets, S and T

- Want to partition a set of objects, {x₁, x₂, ..., x_n}, into two sets, S and T
- Given two types of scores:
 - Membership scores: $mem_S(x_i)$, $mem_T(x_i)$
 - captures the affinity of x_i to S and T, respectively
 - large $mem_S(x_i)$ x_i is likely to be in S
 - Similarity scores: sim(x_i, x_i)
 - captures the similarity between x_i and x_j

- Want to partition a set of objects, {x₁, x₂, ..., x_n}, into two sets, S and T
- Given two types of scores:
 - Membership scores: $mem_S(x_i)$, $mem_T(x_i)$
 - captures the affinity of x_i to S and T, respectively
 - large $mem_S(x_i)$ x_i is likely to be in S
 - Similarity scores: sim(x_i, x_i)
 - captures the similarity between x_i and x_j

- Want to partition a set of objects, {x₁, x₂, ..., x_n}, into two sets, S and T
- Given two types of scores:
 - Membership scores: $mem_S(x_i)$, $mem_T(x_i)$
 - captures the affinity of x_i to S and T, respectively
 - large $mem_S(x_i)$ x_i is likely to be in S
 - Similarity scores: sim(x_i, x_i)
 - captures the similarity between x_i and x_j
- Goal:

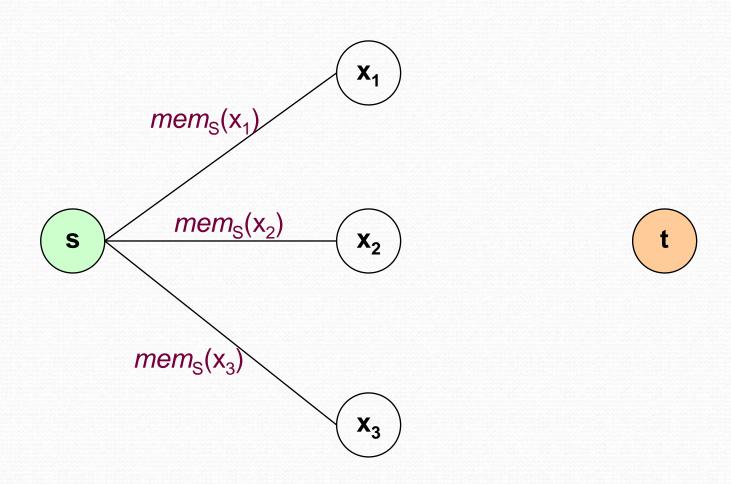
$$\operatorname{Maximize} \sum_{x_i \in S, x_j \in T} sim(x_i, x_j) + \sum_{x \in S} mem_S(x) + \sum_{x \in T} mem_T(x)$$

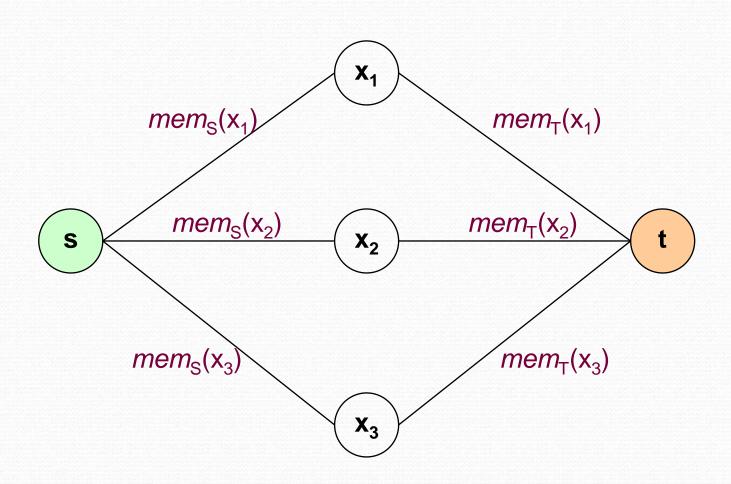
- Want to partition a set of objects, {x₁, x₂, ..., x_n}, into two sets, S and T
- Given two types of scores:
 - Membership scores: $mem_S(x_i)$, $mem_T(x_i)$
 - captures the affinity of x_i to S and T, respectively
 - Put similar objects is likely to be in S
 - S into the same set (x_i, x_i)
 - captures the similarity between x_i and x_j
- Goal: Maximize $\sum_{x_i \in S, x_i \in T} sim(x_i, x_j) + \sum_{x \in S} mem_S(x) + \sum_{x \in T} mem_T(x)$

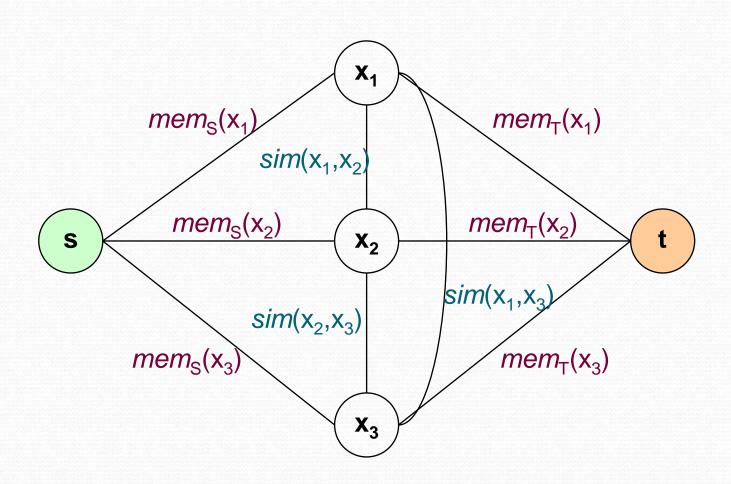
- Want to partition a set of objects, {x₁, x₂, ..., x_n}, into two sets, S and T
- Given two types of scores:
 - Membership scores: $mem_S(x_i)$, $mem_T(x_i)$
 - captures the affinity of x_i to S and T, respectively
 - Put similar objects is likely to be Put an object to the set
 - S into the same set (x_i, x_j) where its membership score is high
 - captures the similarity between x_i and x_j
- Goal:

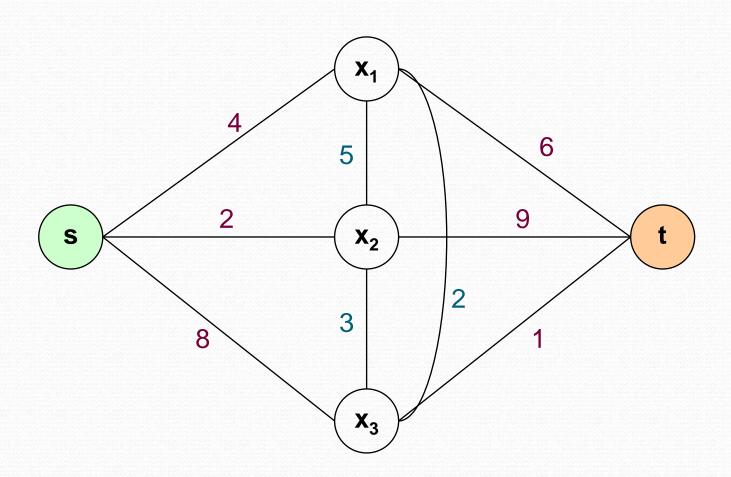
$$\operatorname{Maximize} \sum_{x_i \in S, x_j \in T} sim(x_i, x_j) + \sum_{x \in S} mem_S(x) + \sum_{x \in T} mem_T(x)$$

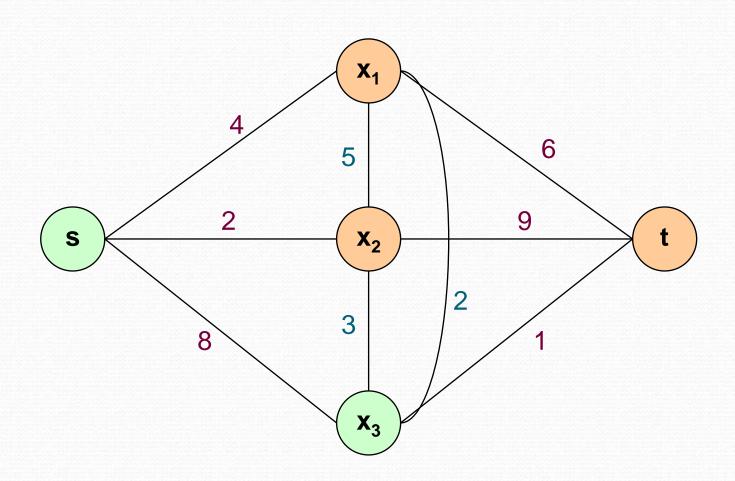
Solving this Problem Using MinCut

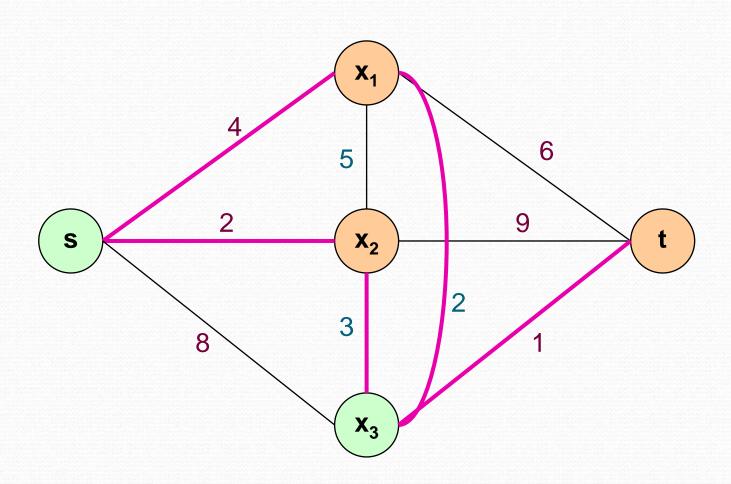


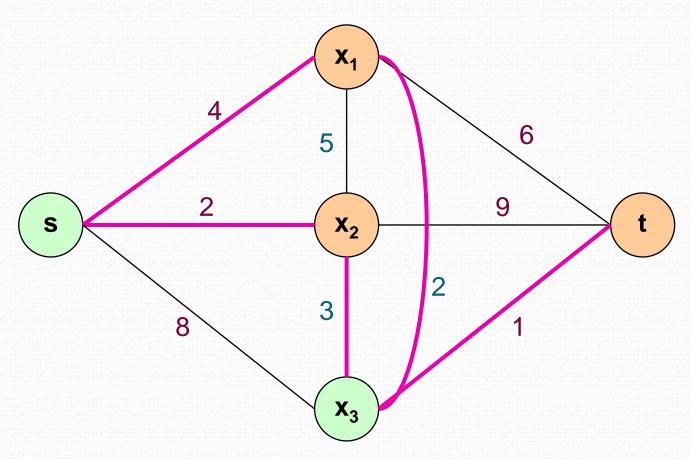






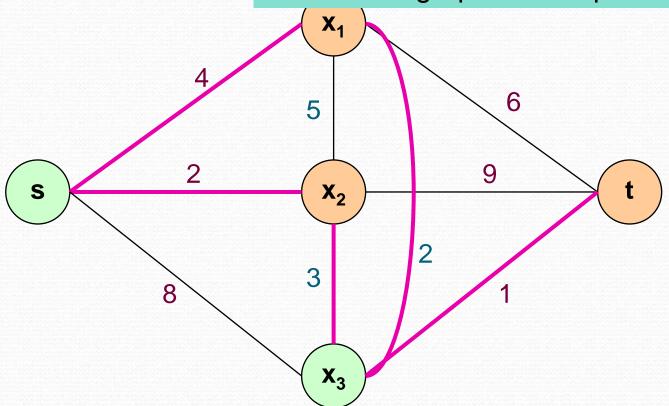




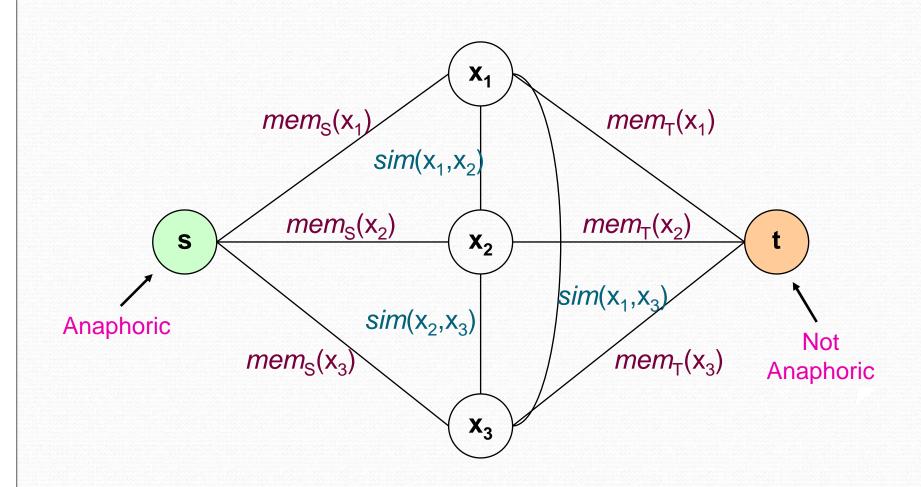


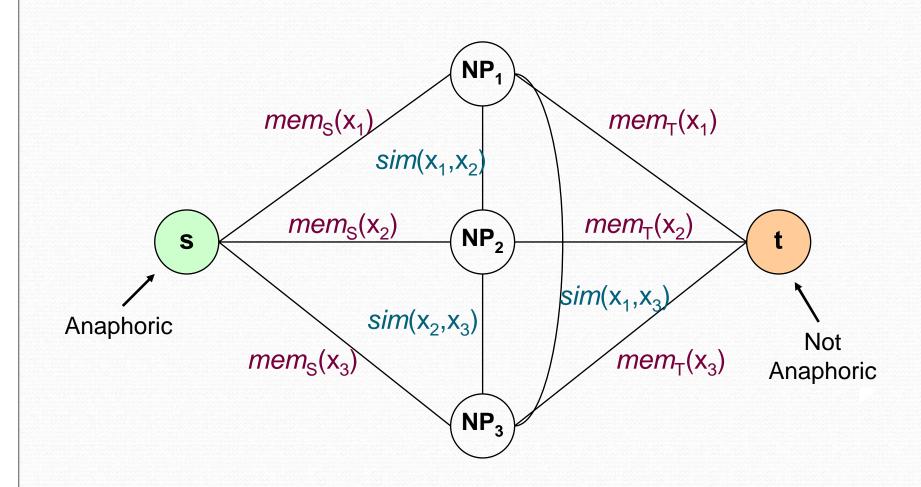
Efficient algorithms for finding the mincut exist

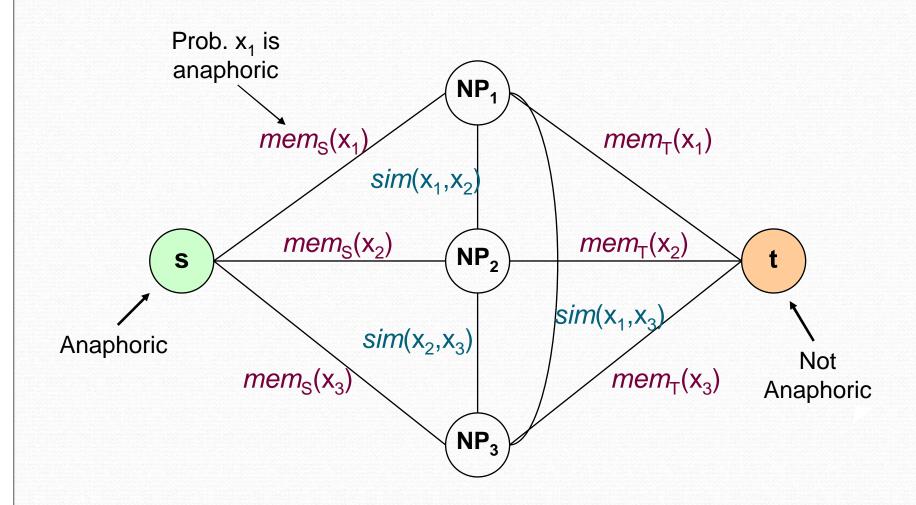
How to recast anaphoricity determination as a graph mincut problem?

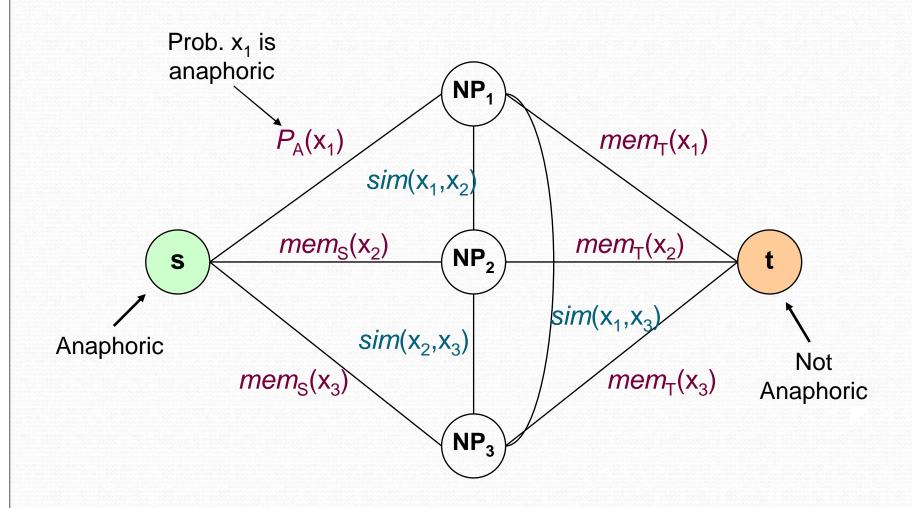


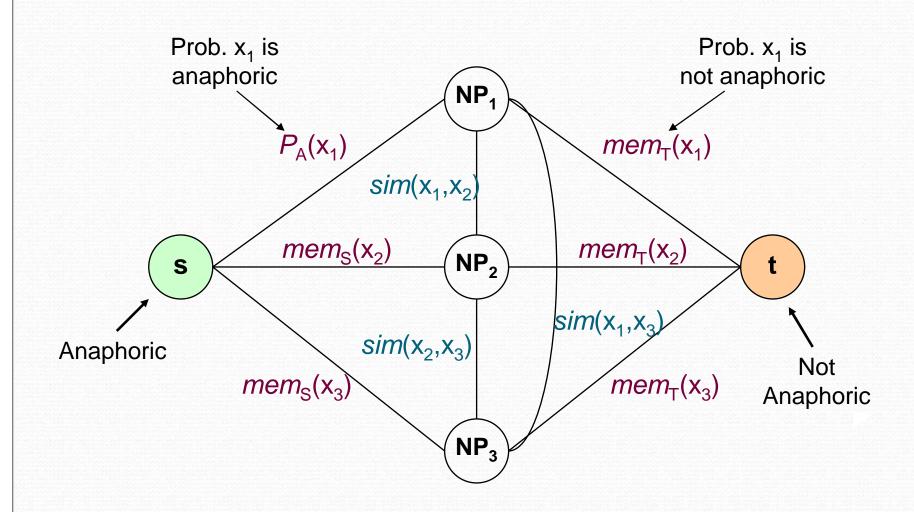
Efficient algorithms for finding the mincut exist

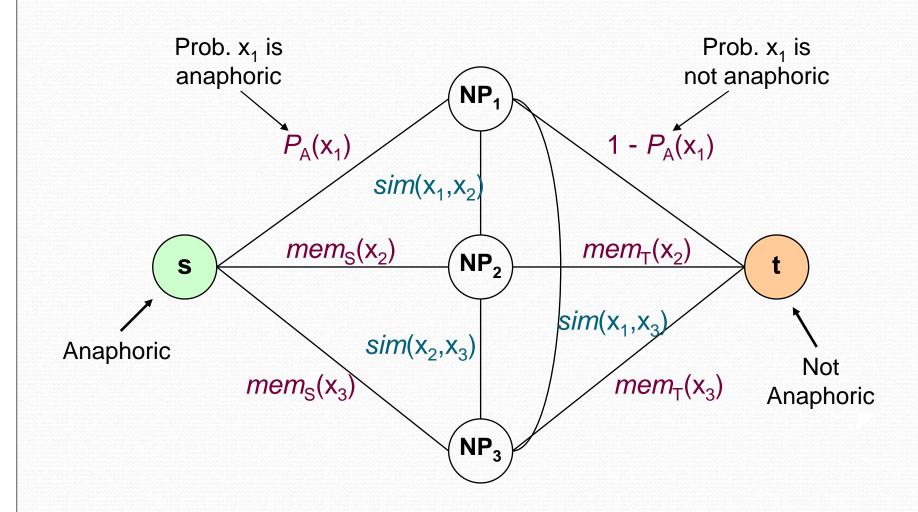


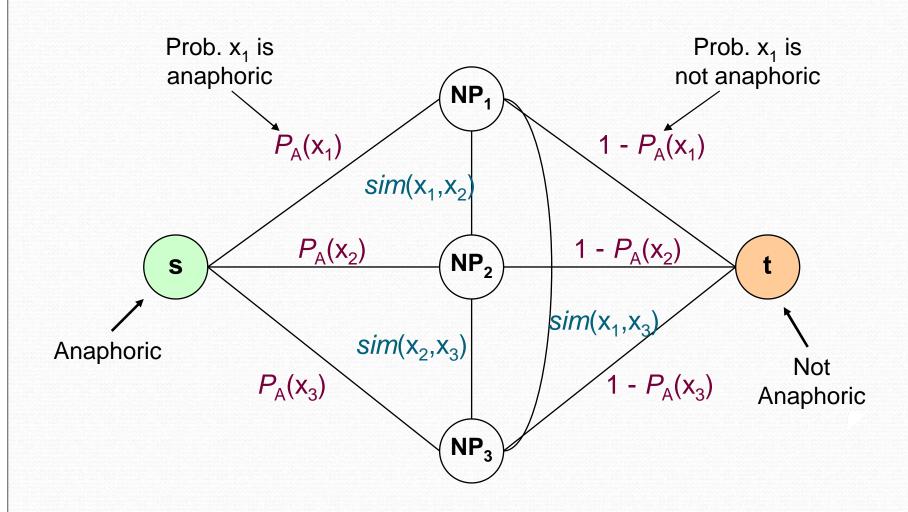


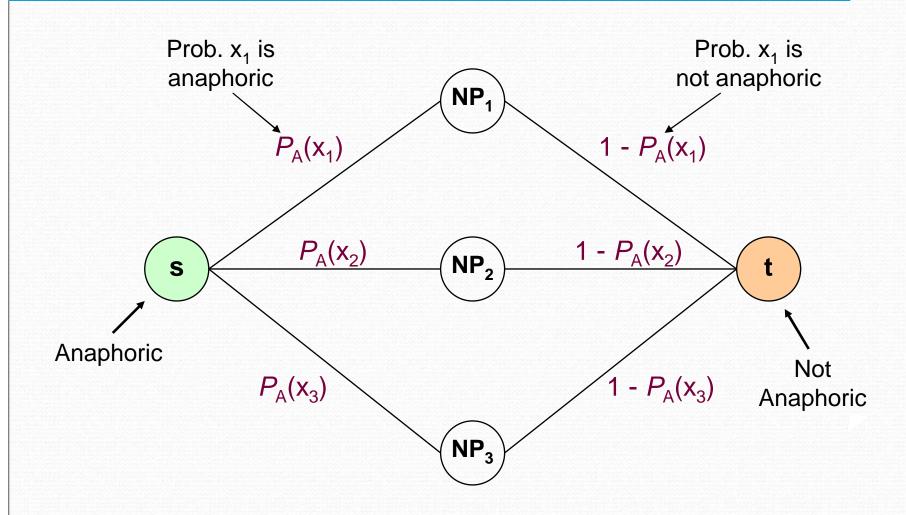




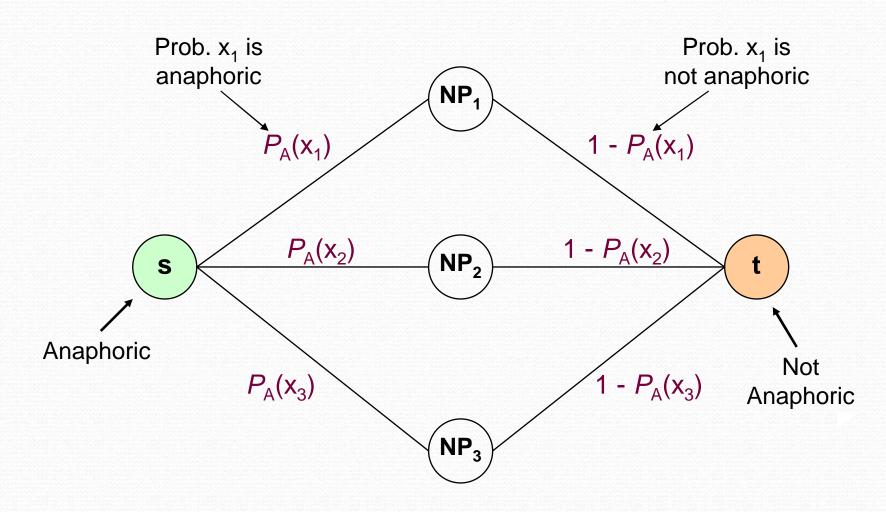




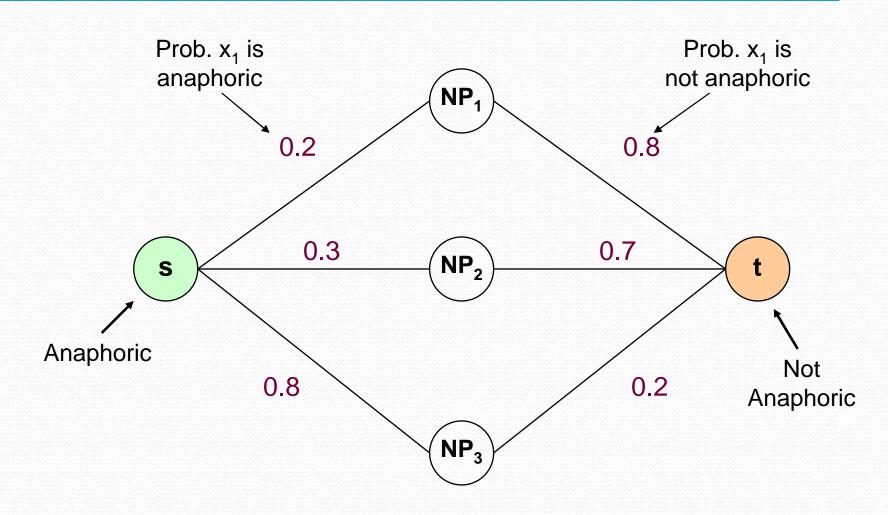




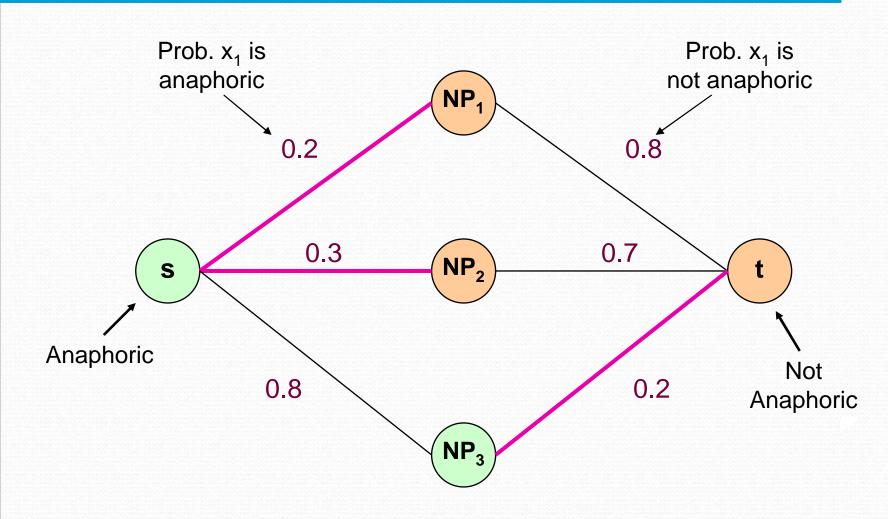
What if we run the mincut finding algorithm on this graph?

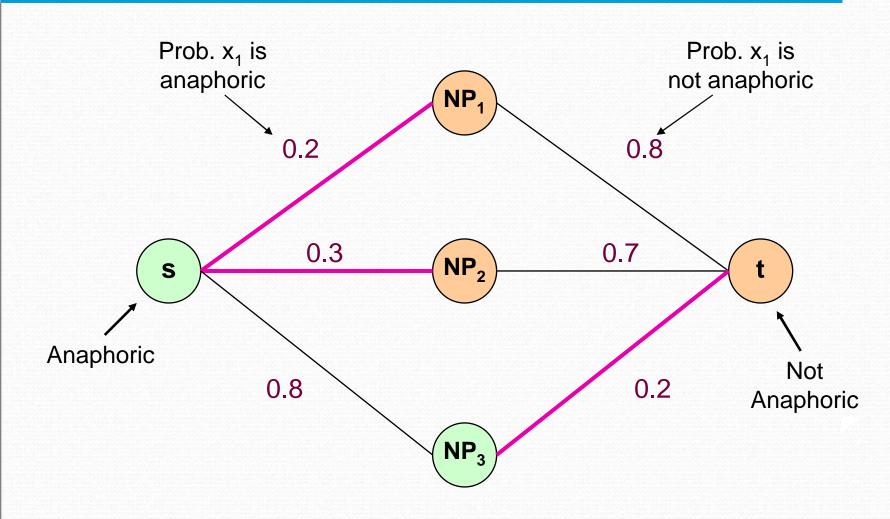


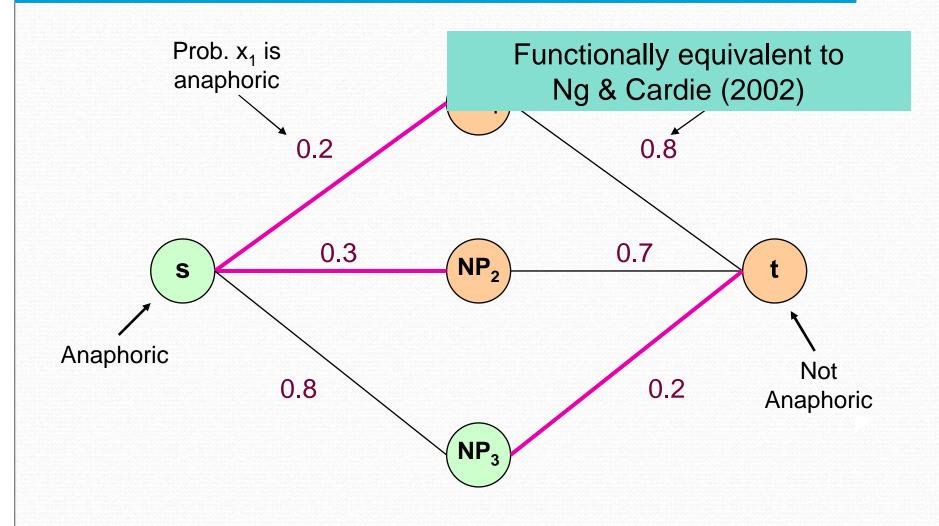
What if we run the mincut finding algorithm on this graph?

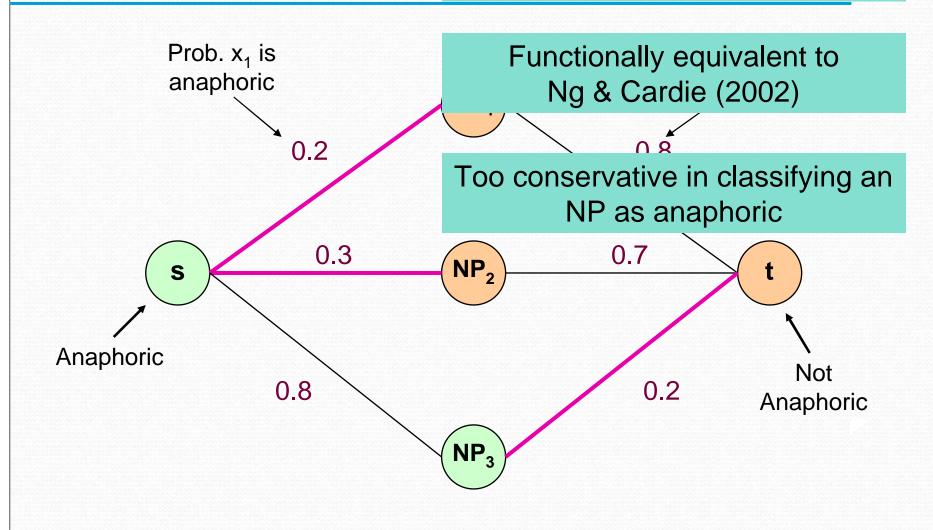


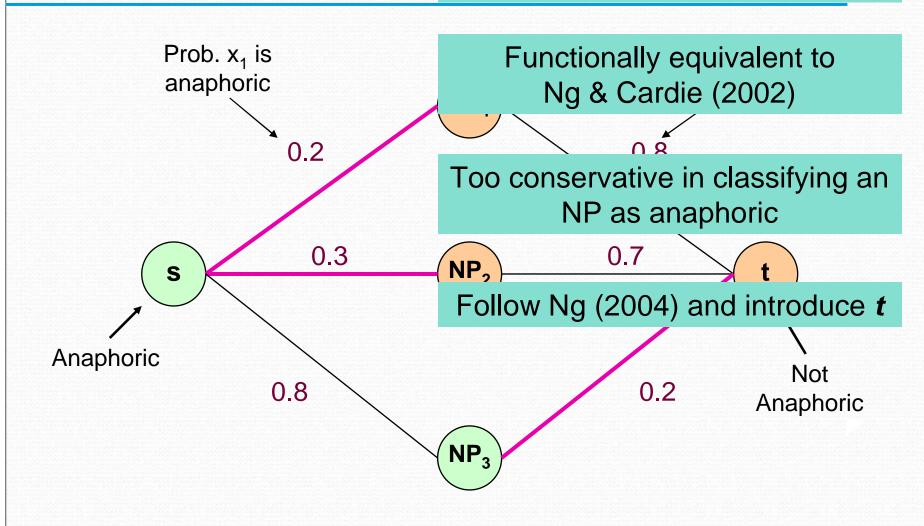
What if we run the mincut finding algorithm on this graph?











NP_i is classified as anaphoric iff P_A(NP_i) ≥ t

- NP_i is classified as anaphoric iff P_A(NP_i) ≥ t
 - *t* is the "conservativeness" parameter
 - tuned on held-out data to maximize coreference F-measure

- NP_i is classified as anaphoric iff P_A(NP_i) ≥ t
 - *t* is the "conservativeness" parameter
 - tuned on held-out data to maximize coreference F-measure
- Goal: modify the edge weights s.t. NP_i will be assigned to the Anaphoric class iff P_A(NP_i) ≥ t

- NP_i is classified as anaphoric iff P_A(NP_i) ≥ t
 - *t* is the "conservativeness" parameter
 - tuned on held-out data to maximize coreference F-measure
- Goal: modify the edge weights s.t. NP_i will be assigned to the Anaphoric class iff P_A(NP_i) ≥ t
- How? Do a linear transformation

- NP_i is classified as anaphoric iff P_A(NP_i) ≥ t
 - *t* is the "conservativeness" parameter
 - tuned on held-out data to maximize coreference F-measure
- Goal: modify the edge weights s.t. NP_i will be assigned to the Anaphoric class iff P_A(NP_i) ≥ t
- How? Do a linear transformation
- But ... we are not happy with just mimicking Ng (2004)

• What is a good candidate similarity function?

- What is a good candidate similarity function?
- Two observations:
 - If NP_i and NP_j are likely to be coreferent according to $\mathbf{P_C}$, then NP_i and NP_j are likely to be both anaphoric (except if NP_i is the head of a coreference chain)

- What is a good candidate similarity function?
- Two observations:
 - If NP_i and NP_j are likely to be coreferent according to P_c, then NP_i and NP_j are likely to be both anaphoric (except if NP_i is the head of a coreference chain)
 - want mincut finder to assign the NPs to the same set

- What is a good candidate similarity function?
- Two observations:
 - If NP_i and NP_j are likely to be coreferent according to P_c, then NP_i and NP_j are likely to be both anaphoric (except if NP_i is the head of a coreference chain)
 - want mincut finder to assign the NPs to the same set
 - If NP_i and NP_j are unlikely to be coreferent according to P_c , it's hard to claim anything regarding their anaphoricity

- What is a good candidate similarity function?
- Two observations:
 - If NP_i and NP_j are likely to be coreferent according to P_c, then NP_i and NP_j are likely to be both anaphoric (except if NP_i is the head of a coreference chain)
 - want mincut finder to assign the NPs to the same set
 - If NP_i and NP_j are unlikely to be coreferent according to P_c , it's hard to claim anything regarding their anaphoricity
- Use $\mathbf{P_c}(NP_i, NP_j)$ as the $sim(NP_i, NP_j)$, but only if $\mathbf{P_c}(NP_i, NP_j) > t_2$

- What is a good candidate similarity function?
- Two observations:
 - If NP_i and NP_j are likely to be coreferent according to P_c, then NP_i and NP_j are likely to be both anaphoric (except if NP_i is the head of a coreference chain)
 - want mincut finder to assign the NPs to the same set
 - If NP_i and NP_j are unlikely to be coreferent according to $\mathbf{P_c}$, it's hard to claim anything regarding their anaphoricity
- Use $P_{\mathbf{c}}(NP_i, NP_j)$ as the $sim(NP_i, NP_j)$, but only if $P_{\mathbf{c}}(NP_i, NP_i) > t_2$ [tuned jointly with t on held-out data]

- What is a good candidate similarity function?
- Two observations:
 - If NP_i and NP_j are likely to be coreferent according to $\mathbf{P_c}$, then NP_i and NP_j are likely to be both anaphoric (except if NP_i is the head of a coreference chain)
 - want mincut finder to assign the NPs to the same set
 - If NP_i and NP_j are unlikely to be coreferent according to $\mathbf{P_c}$, it's hard to claim anything regarding their anaphoricity
- Use $P_{\mathbf{C}}(NP_i, NP_j)$ as the $sim(NP_i, NP_j)$, but only if $P_{\mathbf{C}}(NP_i, NP_j) > t_2$ [tuned jointly with t on held-out data]
- Otherwise, set sim(NP_i, NP_i) to 0

Cut-Based Anaphoricity Determination

- An anaphoricity determination method that can
 - maximize the desired coreference metric (by tuning t and t_2)
 - exploit probabilities provided by P_c (via the sim function)

Plan for the Talk

- Existing methods for computing and using anaphoricity info
- Our graph-cut-based approach to anaphoricity determination
- Evaluation

Evaluation: Goal

 compare our cut-based method for anaphoricity determination with existing methods w.r.t. their effectiveness in improving a learning-based coreference system

Experimental Setup

- Coreference system [Ng, 2007]
 - implements the standard machine learning framework
 - 34 features per instance
- Features for anaphoricity determination [Ng & Cardie, 2002]
 - 37 features per instance
- Learning algorithm
 - Maximum entropy for training P_A and P_C

Experimental Setup (Cont')

- The ACE coreference corpus
 - 3 data sets (Broadcast News, Newspaper, Newswire)
 - each data set comprises a training set and a test set
- NPs extracted automatically
- Scoring programs
 - MUC (Vilain et al., 1995) and CEAF (Luo, 2005)
 - recall, precision, F-measure

	Broa	Broadcast News			Newspaper			Newswire		
	R	P	F	R	P	F	R	P	F	
No anaphoricity	63.2	49.2	55.3	64.5	54.3	59.0	67.3	56.1	61.2	

	Broa	Broadcast News			Newspaper			Newswire			
	R	P	F	R	P	F	R	P	F		
No anaphoricity	63.2	49.2	55.3	64.5	54.3	59.0	67.3	56.1	61.2		

	Broa	Broadcast News			Newspaper			Newswire		
	R	P	F	R	P	F	R	P	F	
No anaphoricity	63.2	49.2	55.3	64.5	54.3	59.0	67.3	56.1	61.2	

	Broa	Broadcast News			ewspap	er	Newswire			
	R	P	F	R	P	F	R	P	F	
No anaphoricity	63.2	49.2	55.3	64.5	54.3	59.0	67.3	56.1	61.2	

CEAF Results: Ng & Cardie (2002) Baseline

	Broa	dcast	News	Ne	Newspaper			Newswire		
	R	P	F	R	P	F	R	P	F	
No anaphoricity	63.2	49.2	55.3	64.5	54.3	59.0	67.3	56.1	61.2	
Ng & Cardie (2002)	55.9	53.3	54.5	60.7	56.3	58.3	60.6	58.2	59.4	

CEAF Results: Ng & Cardie (2002) Baseline

	Broa	Broadcast News			Newspaper			Newswire		
	R	P	F	R	P	F	R	P	F	
No anaphoricity	63.2	49.2	55.3	64.5	54.3	59.0	67.3	56.1	61.2	
Ng & Cardie (2002)	55.9	53.3	54.5	60.7	56.3	58.3	60.6	58.2	59.4	

- F-measure drops slightly in all cases
 - large drops in recall accompanied by smaller gains in precision
 - many anaphoric NPs were misclassified

CEAF Results: Ng (2004) Baseline

	Broa	Broadcast News			ewspap	er	Newswire		
	R	P	F	R	P	F	R	P	F
No anaphoricity	63.2	49.2	55.3	64.5	54.3	59.0	67.3	56.1	61.2
Ng & Cardie (2002)	55.9	53.3	54.5	60.7	56.3	58.3	60.6	58.2	59.4
Ng (2004)	62.5	49.9	55.5	63.5	57.0	61.0	65.6	56.3	60.6

CEAF Results: Ng (2004) Baseline

	Broa	Broadcast News			Newspaper			Newswire		
	R	P	F	R	P	F	R	P	F	
No anaphoricity	63.2	49.2	55.3	64.5	54.3	59.0	67.3	56.1	61.2	
Ng & Cardie (2002)	55.9	53.3	54.5	60.7	56.3	58.3	60.6	58.2	59.4	
Ng (2004)	62.5	49.9	55.5	63.5	57.0	61.0	65.6	56.3	60.6	

- requires tuning of t
 - reserve 1/3 of the training data for parameter tuning
 - train P_A and P_C on remaining 2/3 of the training data

CEAF Results: Ng (2004) Baseline

	Broa	Broadcast News			ewspap	er	Newswire		
	R	P	F	R	P	F	R	P	F
No anaphoricity	63.2	49.2	55.3	64.5	54.3	59.0	67.3	56.1	61.2
Ng & Cardie (2002)	55.9	53.3	54.5	60.7	56.3	58.3	60.6	58.2	59.4
Ng (2004)	62.5	49.9	55.5	63.5	57.0	61.0	65.6	56.3	60.6

- requires tuning of t
 - reserve 1/3 of the training data for parameter tuning
 - train P_A and P_C on remaining 2/3 of the training data
- mixed results in comparison to "No Anaphoricity" baseline
 - F-measure gains by 0.2% for BNEWS, 1.1% for NPAPER, but drops by 0.6% for NWIRE

CEAF Results: Luo (2007) Baseline

	Broa	Broadcast News			Newspaper			Newswire		
	R	P	F	R	P	F	R	P	F	
No anaphoricity	63.2	49.2	55.3	64.5	54.3	59.0	67.3	56.1	61.2	
Ng & Cardie (2002)	55.9	53.3	54.5	60.7	56.3	58.3	60.6	58.2	59.4	
Ng (2004)	62.5	49.9	55.5	63.5	57.0	61.0	65.6	56.3	60.6	
Luo (2007)	62.7	51.1	56.3	64.6	55.4	59.6	67.0	56.8	61.5	

CEAF Results: Luo (2007) Baseline

	Broa	Broadcast News			Newspaper			Newswire		
	R	P	F	R	P	F	R	P	F	
No anaphoricity	63.2	49.2	55.3	64.5	54.3	59.0	67.3	56.1	61.2	
Ng & Cardie (2002)	55.9	53.3	54.5	60.7	56.3	58.3	60.6	58.2	59.4	
Ng (2004)	62.5	49.9	55.5	63.5	57.0	61.0	65.6	56.3	60.6	
Luo (2007)	62.7	51.1	56.3	64.6	55.4	59.6	67.0	56.8	61.5	

- in comparison to "No Anaphoricity" baseline
 - F-measure improves insignificantly (by 0.3-1.0%)

Results: Denis & Baldridge (2007) Baseline

	Broadcast News			Ne	ewspap	er	Newswire		
	R	P	F	R	P	F	R	P	F
No anaphoricity	63.2	49.2	55.3	64.5	54.3	59.0	67.3	56.1	61.2
Ng & Cardie (2002)	55.9	53.3	54.5	60.7	56.3	58.3	60.6	58.2	59.4
Ng (2004)	62.5	49.9	55.5	63.5	57.0	61.0	65.6	56.3	60.6
Luo (2007)	62.7	51.1	56.3	64.6	55.4	59.6	67.0	56.8	61.5
Denis & Baldridge (2007)	63.8	51.4	56.9	62.6	53.6	57.8	67.0	56.8	61.5

Results: Denis & Baldridge (2007) Baseline

	Broadcast News			Newspaper			Newswire		
	R	P	F	R	P	F	R	P	F
No anaphoricity	63.2	49.2	55.3	64.5	54.3	59.0	67.3	56.1	61.2
Ng & Cardie (2002)	55.9	53.3	54.5	60.7	56.3	58.3	60.6	58.2	59.4
Ng (2004)	62.5	49.9	55.5	63.5	57.0	61.0	65.6	56.3	60.6
Luo (2007)	62.7	51.1	56.3	64.6	55.4	59.6	67.0	56.8	61.5
Denis & Baldridge (2007)	63.8	51.4	56.9	62.6	53.6	57.8	67.0	56.8	61.5

- mixed results in comparison to "No Anaphoricity" baseline
 - F-measure rises significantly for BNEWS, drop insignificantly for NPAPER, and rises insignificantly for NWIRE

CEAF Results: Kleener (2007) Baseline

	Broadcast News			Newspaper			Newswire		
	R	P	F	R	P	F	R	P	F
No anaphoricity	63.2	49.2	55.3	64.5	54.3	59.0	67.3	56.1	61.2
Ng & Cardie (2002)	55.9	53.3	54.5	60.7	56.3	58.3	60.6	58.2	59.4
Ng (2004)	62.5	49.9	55.5	63.5	57.0	61.0	65.6	56.3	60.6
Luo (2007)	62.7	51.1	56.3	64.6	55.4	59.6	67.0	56.8	61.5
Denis & Baldridge (2007)	63.8	51.4	56.9	62.6	53.6	57.8	67.0	56.8	61.5
Kleener (2007)	63.2	51.3	56.7	62.6	53.6	57.8	66.7	56.7	61.3

CEAF Results: Kleener (2007) Baseline

	Broadcast News			Newspaper			Newswire		
	R	P	F	R	P	F	R	P	F
No anaphoricity	63.2	49.2	55.3	64.5	54.3	59.0	67.3	56.1	61.2
Ng & Cardie (2002)	55.9	53.3	54.5	60.7	56.3	58.3	60.6	58.2	59.4
Ng (2004)	62.5	49.9	55.5	63.5	57.0	61.0	65.6	56.3	60.6
Luo (2007)	62.7	51.1	56.3	64.6	55.4	59.6	67.0	56.8	61.5
Denis & Baldridge (2007)	63.8	51.4	56.9	62.6	53.6	57.8	67.0	56.8	61.5
Kleener (2007)	63.2	51.3	56.7	62.6	53.6	57.8	66.7	56.7	61.3

- in comparison to Denis & Baldridge baseline,
 - F-measure never improves, recall slightly deteriorates
 - transitivity constraints tend to produce smaller clusters
 - enforcing transitivity does not improve coreference performance

	Broadcast News			Newspaper			Newswire		
	R	P	F	R	P	F	R	P	F
No anaphoricity	63.2	49.2	55.3	64.5	54.3	59.0	67.3	56.1	61.2
Ng & Cardie (2002)	55.9	53.3	54.5	60.7	56.3	58.3	60.6	58.2	59.4
Ng (2004)	62.5	49.9	55.5	63.5	57.0	61.0	65.6	56.3	60.6
Luo (2007)	62.7	51.1	56.3	64.6	55.4	59.6	67.0	56.8	61.5
Denis & Baldridge (2007)	63.8	51.4	56.9	62.6	53.6	57.8	67.0	56.8	61.5
Kleener (2007)	63.2	51.3	56.7	62.6	53.6	57.8	66.7	56.7	61.3
Graph Minimum Cut	61.4	57.6	59.4	64.1	59.4	61.7	65.7	61.9	63.8

• 1/3 of training data for joint tuning of t and t_2 ; 2/3 for training P_A and P_C

	Broadcast News			Newspaper			Newswire		
	R	P	F	R	P	F	R	P	F
No anaphoricity	63.2	49.2	55.3	64.5	54.3	59.0	67.3	56.1	61.2
Ng & Cardie (2002)	55.9	53.3	54.5	60.7	56.3	58.3	60.6	58.2	59.4
Ng (2004)	62.5	49.9	55.5	63.5	57.0	61.0	65.6	56.3	60.6
Luo (2007)	62.7	51.1	56.3	64.6	55.4	59.6	67.0	56.8	61.5
Denis & Baldridge (2007)	63.8	51.4	56.9	62.6	53.6	57.8	67.0	56.8	61.5
Kleener (2007)	63.2	51.3	56.7	62.6	53.6	57.8	66.7	56.7	61.3
Graph Minimum Cut	61.4	57.6	59.4	64.1	59.4	61.7	65.7	61.9	63.8

- 1/3 of training data for joint tuning of t and t_2 ; 2/3 for training P_A and P_C
- significant improvement over "No Anaphoricity" baseline
 - large gains in precision and smaller drops in recall

	Broadcast News			Newspaper			Newswire		
	R	P	F	R	P	F	R	P	F
No anaphoricity	63.2	49.2	55.3	64.5	54.3	59.0	67.3	56.1	61.2
Ng & Cardie (2002)	55.9	53.3	54.5	60.7	56.3	58.3	60.6	58.2	59.4
Ng (2004)	62.5	49.9	55.5	63.5	57.0	61.0	65.6	56.3	60.6
Luo (2007)	62.7	51.1	56.3	64.6	55.4	59.6	67.0	56.8	61.5
Denis & Baldridge (2007)	63.8	51.4	56.9	62.6	53.6	57.8	67.0	56.8	61.5
Kleener (2007)	63.2	51.3	56.7	62.6	53.6	57.8	66.7	56.7	61.3
Graph Minimum Cut	61.4	57.6	59.4	64.1	59.4	61.7	65.7	61.9	63.8

- 1/3 of training data for joint tuning of t and t_2 ; 2/3 for training P_A and P_C
- significant improvement over "No Anaphoricity" baseline
 - large gains in precision and smaller drops in recall
- significant improvement over best baseline (D&B)

	Broadcast News			Newspaper			Newswire		
	R	P	F	R	P	F	R	P	F
No anaphoricity	63.2	49.2	55.3	64.5	54.3	59.0	67.3	56.1	61.2
Ng & Cardie (2002)	55.9	53.3	54.5	60.7	56.3	58.3	60.6	58.2	59.4
Ng (2004)	62.5	49.9	55.5	63.5	57.0	61.0	65.6	56.3	60.6
Luo (2007)	62.7	51.1	56.3	64.6	55.4	59.6	67.0	56.8	61.5
Denis & Baldridge (2007)	63.8	51.4	56.9	62.6	53.6	57.8	67.0	56.8	61.5
Kleener (2007)	63.2	51.3	56.7	62.6	53.6	57.8	66.7	56.7	61.3
Graph Minimum Cut	61.4	57.6	59.4	64.1	59.4	61.7	65.7	61.9	63.8

- 1/3 of training data for joint tuning of t and t_2 ; 2/3 for training P_A and P_C
- significant improvement over "No Anaphoricity" baseline
 - large gains in precision and smaller drops in recall
- significant improvement over best baseline (D&B)
- best F-measure score achieved for each dataset

Summary

- Proposed a graph-cut-based approach to anaphoricity determination that
 - directly optimizes the desired coreference evaluation metric
 - exploits the probabilities provided by the coreference model
 - achieves the best results on all three ACE datasets according to both the MUC scorer and the CEAF scorer
 - provides a flexible mechanism for co-ordinating anaphoricity and coreference decisions